• 제목/요약/키워드: glycol chitin

검색결과 13건 처리시간 0.014초

New Thermostable Chitosanase from Bacillus sp.: Purification and Characterization

  • Yoon, Ho-Geun;Ha, Sang-Chul;Lim, Young-Hee;Cho, Hong-Yon
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권5호
    • /
    • pp.449-454
    • /
    • 1998
  • A thennostable chitosanase was purified from Bacillus sp. KFB-C108, by fractionation of 30 to 70% saturation with ammonium sulfate, DEAE-Toyopearl chromatography, Butyl-Toyopearl chromatography, and TSK-Gel HW-55F gel filtration. The purified enzyme showed a single band on sodium dodecyl sulfate polyacrylamide gel electrophoresis, and the molecular weight was estimated to be 48 kDa. The enzyme degraded soluble chitosan and colloidal chitosan, but did not degrade glycol chitosan, chitin, and the other compounds investigated. There was no effect on the chitosanase activity by treatment with chelating agents, alkylating agents, and various metals investigated, and only cobalt ions inhibited the activity. Optimum temperature and pH were $55^{\circ}C$ and 6.5, respectively. The enzyme was stable after heat treatment at $80^{\circ}C$ for 10 min or $70^{\circ}C$ for 30 min and fairly stable in several organic solvents as well. Chitosan was hydrolyzed to $(GlcN)_4$as a major product by incubation with the enzyme.

  • PDF

Purification and Characteristics of Two Types of Chitosanases from Aspergillus fumigatus KH-94

  • Kim, Soon-Young;Shon, Dong-Hwa;Lee, Ke-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • 제8권6호
    • /
    • pp.568-574
    • /
    • 1998
  • Two types of chitosanases produced from Aspergillus fumigatus KH-94 were purified by ion exchange and gel permeation chromatography. Molecular weights of the enzymes are 22.5 kDa (chitosanase I) and 108 kDa (chitosanase II). pI, optimum pH, and temperature of chitosanase I are 7.3, 5.5, and 70-$80^{\circ}C$, respectively, and those of chitosanase II are 4.8, 4.5~5.5, and 50~$60^{\circ}C$, respectively. Activities of both chitosanases were increased by $Mn^{2+}$ but inhibited by $Cu^{2+}$ and $Hg^{2+}$ . Chitosanase I has endo-splitting activity that hydrolyzes chitopentaose, chitohexaose, and chitosan to chitobiose, chitotriose, and chitotetraose, whereas chitosanase II has exo-splitting activity that hydrolyzes chitobiose and chitosan to glucosamine. Chitosanase II was found to have transglycosylation activity also in the reaction of 2% more chitooligosaccharides as a substrate and at the initial reaction. The higher degree of deacetylation, the stronger activities of chitosanase Iand II toward chitosans. Both chitosanases could hydrolyze chitosan and glycol chitosan but not chitin, cellulose, and carboxymethyl cellulose. To produce higher degree of polymerization of chitooligosaccharides, chitosanase I was used and yielded 80% of recovery.

  • PDF

Purification and Properties of Chitosanase from Chitinolytic $\beta$-Proteobacterium KNU3

  • Yi, Jae-Hyoung;Jang, Hong-Ki;Lee, Sang-Jae;Lee, Keun-Eok;Choi, Shin-Geon
    • Journal of Microbiology and Biotechnology
    • /
    • 제14권2호
    • /
    • pp.337-343
    • /
    • 2004
  • A bacterial strain concurrently producing extracellular chitosanase and chitinase was isolated from soil and identified as a member of the $\beta$-subgroup of Proteobacteria through its 16S rRNA analysis and some biochemical analyses. The newly discovered strain, named as KNU3, had 99% homology of its 16S rRNA sequence with chitinolytic $\beta$-Proteobacterium CTE108. Strain KNU3 produced 34 kDa of chitosanase in addition to two chitinases of 68 kDa and 30 kDa, respectively. The purified chitosanase protein (ChoK) showed activity toward soluble, colloidal, and glycol chitosan, but did not exhibit any activity toward colloidal chitin. The optimum pH and temperature of ChoK were 6.0 and $70^{\circ}C$, respectively. The chitosanase was stable in the pH 4.0 to 8.0 range at $70^{\circ}C$, while enzyme activity was relatively stable at below $45^{\circ}C$. MALDI-TOF MS and N-terminal amino acid sequence analyses indicated that ChoK protein is related to chitosanases from Matsuebacter sp. and Sphingobacterium multivorum. HPLC analysis of chitosan lysates revealed that glucosamine tetramers and hexamers were the major products of hydrolysis.