• Title/Summary/Keyword: glycine oligomer

Search Result 2, Processing Time 0.017 seconds

Study on Maillard Reaction Products Derived from Aqueous and Ethanolic Fructose-Glycine and Its Oligomer Solutions

  • Kim, Ji-Sang
    • Preventive Nutrition and Food Science
    • /
    • v.15 no.4
    • /
    • pp.297-303
    • /
    • 2010
  • The present study compared the Maillard reaction products (MRPs) derived from aqueous and ethanolic fructoseglycine and its oligomer (dimer and trimer) solutions. The pH was lower in glycine (G) than in diglycine (DG) and triglycine (TG) in both aqueous and ethanolic solutions, but the pH difference between the DG and TG was not significant. MRPs derived from the DG had a greater absorbance at 294 and 420 nm in ethanolic solution than in an aqueous solution. In particular, the loss of sugar was higher in ethanolic solution than in aqueous solution. Enolization of fructose was observed in both aqueous and ethanolic MRP solutions; however, enolization was not observed for the G in aqueous MRP solutions. The glycine oligomer content in ethanolic MRP solutions remained higher than that in aqueous MRP solutions. Furthermore, neither diglycine nor triglycine were detected in the G aqueous or ethanolic MRP solutions, while triglycine was detected in both the DG aqueous and ethanolic MRP solutions. Absorption in the ultraviolet-visible (UV-Vis) spectra was higher with MRPs derived from the ethanolic solution than with those derived from the aqueous solution. MRPs derived from the DG in an ethanolic solution showed the highest absorption intensity.

Biodistribution of 99mTc Tricarbonyl Glycine Oligomers

  • Jang, Beom-Su;Lee, Joo-Sang;Rho, Jong Kook;Park, Sang Hyun
    • Toxicological Research
    • /
    • v.28 no.4
    • /
    • pp.235-240
    • /
    • 2012
  • $^{99m}Tc$ tricarbonyl glycine monomers, trimers, and pentamers were synthesized and evaluated for their radiolabeling and in vivo distribution characteristics. We synthesized a $^{99m}Tc$-tricarbonyl precursor with a low oxidation state (I). $^{99m}Tc(CO)_3(H_2O)_3^+$ was then made to react with monomeric and oligomeric glycine for the development of bifunctional chelating sequences for biomolecules. Labeling yields of $^{99m}Tc$-tricarbonyl glycine monomers and oligomers were checked by high-performance liquid chromatography. The labeling yields of $^{99m}Tc$-tricarbonyl glycine and glycine oligomers were more than 95%. We evaluated the characteristics of $^{99m}Tc$-tricarbonyl glycine oligomers by carrying out a lipophilicity test and an imaging study. The octanol-water partition coefficient of $^{99m}Tc$ tricarbonyl glycine oligomers indicated hydrophilic properties. Single-photon emission computed tomography imaging of $^{99m}Tc$-tricarbonyl glycine oligomers showed rapid renal excretion through the kidneys with a low uptake in the liver, especially of $^{99m}Tc$ tricarbonyl triglycine. Furthermore, we verified that the addition of triglycine to prototype biomolecules (AGRGDS and RRPYIL) results in the improvement of radiolabeling yield. From these results, we conclude that triglycine has good characteristics for use as a bifunctional chelating sequence for a $^{99m}Tc$-tricarbonyl-based biomolecular imaging probe.