• Title/Summary/Keyword: glutathione peroxidase activity

Search Result 713, Processing Time 0.035 seconds

Melatonin Enhances Hepatic Glutathione-peroxidase Activity in Sprague-Dawley Rats

  • Kim, Choong-Yong;Yun, Choong-Soon;Park, Dae-Hun;Choi, Woo-Sung;Kim, Jin-Suk
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.1 no.2
    • /
    • pp.221-224
    • /
    • 1997
  • Effects of melatonin on hepatic glutathione-peroxidase (GSH-Px) and glutathione-reductase (GSH-reductase) activities were studied in Sprague-Dawley (SD) rats administered i.p. (10 mg/kg body weight) with melatonin during 15 days. The activity of cytosolic GSH-reductase in the liver was not changed by melatonin. However, melatonin injection increased significantly the activity of liver cytosolic GSH-Px activity compared with those in saline-treated rats. At the same time, plasma GSH-Px was also increased significantly in melatonin-treated rats. Since GSH-Px, a major antioxidative enzyme, removes $H_2O_2$ and lipid peroxides which are formed during lipid peroxidation from cellular membrane, such elevation of heptatic GSH-Px activity may contribute to the improvement of antioxidative effects under oxidative damage in the liver.

  • PDF

The Glutathione Peroxidase, Glutathione Reductase and Glutathione-s-Transferase Activity in Liver, Kidney and Testes of Male Rats Intoxicated by Cadmium Chloride and Effect of Leek(Allium Odorum L. ) (카드뮴에 중독된 웅성 흰 쥐의 간, 신장 및 고환의 Glutathione Peroxidase, Glutathione Reduetase, and Glutathione-s-Transferasea의 활성도와 부추의 효과)

  • 안령미
    • Journal of Environmental Health Sciences
    • /
    • v.18 no.1
    • /
    • pp.76-83
    • /
    • 1992
  • Effect of freeze drying leek against cadmium poisoning on glutathione peroxidase, on glutathione reductase and on glutathione-s-transferase in liver, kidney and testes of the male rats during the administered period. In this experiment, male rats of Sprague-Dawley strain were used. The rats which were fed for 15 weeks were divided into 4 groups basal diet 3% leek added diet basal diet and cadmium in water and 3% leek added diet and cadmium in water. Cadmium was administered ad libitum 100ppm CdCl$_{2}$ in distilled water. The followings are the result of this experiment. 1. Leek enhanced the glutathione peroxidase activities which were reduced by cadmium treatment in liver, kidney and testes but not significance. 2. Leek reduced glutathione reductase activities which were incresed by cadmium in liver, kidney and testes. 3. Leek incresed the activities of glutathfone-s-transferase in liver but not in kidney and but not in testes. 4. Leek incresed glutathione concentration which was decresed by cadmium treatment in liver and kidney but not testes. This experiment showed that leek-addition group had protective effect against cadmium poisoning and alleviated GR and glutathione-s-transferase activities in tissues. Leek incresed activities of glutathione peroxidase in liver, kidney and testes but not significance. Therefore, this experiment concluded that leek defensive power against long term cadmium poisoning.

  • PDF

Effect of Selenium on Pulmonary Glutathione Peroxidase and Alveolarization of Neonatal Rats

  • Kim, Hye-Young
    • Korean Journal of Environmental Biology
    • /
    • v.21 no.3
    • /
    • pp.297-302
    • /
    • 2003
  • This study was designed to determine whether selenium (Se) nutrition affects pulmonary glutathione peroxidase and alveolarization in the neonatal rat. Twenty-four female Sprague Dawley rats were bred and fed a semipurified Se-deficient (0.04 ppm, Se-) or a Se-adequate (0.5 ppm, Se+) diet through pregnancy and lactation. Pulmonary DNA synthesis was slightly higher in Se+ pups than in Se- pups on d 6 and d 9 of lactation, but significant difference was not found. As pulmonary alveolarization progressed, mean air space size decreased and internal surface area and lung volume increased. No difference in pulmonary alveolarization was found between Se- and Se+ pups by age. Pulmonary Se concentration was higher in Se+ pups than in Se- pups at all age. Glutathione peroxidase activity in lung tissur reflected Se status and was lower in Se- pups than in Se+ pups. In conclusion, selenium has no significant effect on alveolarization of neonatal lungs. but it is necessary for adequate supply of pulmonary antioxidant, glutathione peroxidase.

Selenium Status and Glutathione Peroxidase Activity in Korean Infants (우리나라 일부 영아의 혈액 셀레늄과 Glutathione Peroxidase 효소 활성에 관한 연구)

  • Kim, Hyun-Ha;Yang, Hye-Ran;Kim, Hye-Young
    • Journal of Nutrition and Health
    • /
    • v.44 no.2
    • /
    • pp.112-118
    • /
    • 2011
  • We investigated the selenium (Se) nutrition status in Korean infants. The mean serum Se concentration in infants was 66.9 ${\mu}g/L$, and it increased with increasing in infant age: 57.6 ${\mu}g/L$ at 0-5 months, 71.8 ${\mu}g/L$ at 6-11 months, and 75.5 ${\mu}g/L$ at 12-24 months. Serum glutathione peroxidase (GPx) activity also increased with infant age. Serum Se concentration in infants was positively correlated with serum GPx activity (r = 0.565, p < 0.01). At 0-5 months, human milk-fed infants tended to have higher Se concentrations and GPx activity than those of formula-fed infants, but the result was not significant. With the introduction of supplemental feeding at 6-24 months of age, serum Se concentration was not different between the groups. Therefore, human milk feeding seemed to be more appropriate for infant Se nutrition than infant formula feeding during the first 6 months of life, but supplemental feeding became more important later to maintain good Se nutrition status.

Antioxidant Enzyme Activity in Rat Liver and Kidney Related to Coix Intake

  • Kim, Kyeok;Lee, Mie-Soon
    • Preventive Nutrition and Food Science
    • /
    • v.4 no.2
    • /
    • pp.134-138
    • /
    • 1999
  • The effects of dietary Coix(lacryma-jobi) water extract on the antioxidant enzyme activity in the liver and kidney of Sprague-Dawley rats were studied. Forty-five rats were fed for 3 weeks with either control diet or experimental diets that contain either Coix water extract or Coix water residue. Twenty percent of the carbohydrate was replaced with Coix water residue by dry weight in the water residue diet, while distilled water was replaced by Coix water extract to make a pellet-form diet in the Coix water extract diet. The levels of glutathione, glutathione-peroxidase, and glutathione-S-transferase activities in liver and kidney were measured . It has been found that glutathione, glutathione peroxidase, and glutathione-S-transferase enzyme activities from activities from liver and kidneyof the rats were enhanced in the group fed with Coix water extract.

  • PDF

HepG2 세포의 산화적 손상에 대한 산삼 추출물의 보호효과 - DNA chip을 이용하여 -

  • Kim, Hyung-Seok;Park, Hee-Soo;Kwon, Ki-Rok
    • Journal of Pharmacopuncture
    • /
    • v.10 no.1 s.22
    • /
    • pp.121-135
    • /
    • 2007
  • Objectives : This study was carried out to examine protective effect of wild ginseng extract on HepG2 human hepatoma cell line against tert-Butyl hydroperoxide (t-BHP)-induced oxidative damage. Methods : To evaluate protective effect of wild ginseng extract against t-BHP induced cytotoxicity, LDH level and activity of glutathione peroxidase and reductase were measured. Gene expression was also measured using DNA microarray. Results : Wild ginseng extract showed a significant protective effect against t-BHP-induced cytotoxicity in HepG2 cell line. It is not, however, related with the activities of glutathione peroxidase and glutathione reductase. Analysis of gene expression using DNA chip, demonstrated that 28 genes were up-regulated in t-BHP only group. Five genes - selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, serfiredoxin 1 homolog - may be related with the protective effect of wild ginseng extract. Conclusions : Based on the results, a protective effect of wild ginseng extract against t-BHP-induced oxidative damage in HepG2 cell line is not associated with the activities of glutathione peroxidase and glutathione reductase, but with the expression of selenoprotein P, glutathione peroxidase 3, sirtuin 2, peroxiredoxin 2, and serfiredoxin 1 homolog.

Methylglyoxal-Scavenging Enzyme Activities Trigger Erythroascorbate Peroxidase and Cytochrome c Peroxidase in Glutathione-Depleted Candida albicans

  • Kang, Sa-Ouk;Kwak, Min-Kyu
    • Journal of Microbiology and Biotechnology
    • /
    • v.31 no.1
    • /
    • pp.79-91
    • /
    • 2021
  • γ-Glutamylcysteine synthetase (Gcs1) and glutathione reductase (Glr1) activity maintains minimal levels of cellular methylglyoxal in Candida albicans. In glutathione-depleted Δgcs1, we previously saw that NAD(H)-linked methylglyoxal oxidoreductase (Mgd1) and alcohol dehydrogenase (Adh1) are the most active methylglyoxal scavengers. With methylglyoxal accumulation, disruptants lacking MGD1 or ADH1 exhibit a poor redox state. However, there is little convincing evidence for a reciprocal relationship between methylglyoxal scavenger genes-disrupted mutants and changes in glutathione-(in)dependent redox regulation. Herein, we attempt to demonstrate a functional role for methylglyoxal scavengers, modeled on a triple disruptant (Δmgd1/Δadh1/Δgcs1), to link between antioxidative enzyme activities and their metabolites in glutathione-depleted conditions. Despite seeing elevated methylglyoxal in all of the disruptants, the result saw a decrease in pyruvate content in Δmgd1/Δadh1/Δgcs1 which was not observed in double gene-disrupted strains such as Δmgd1/Δgcs1 and Δadh1/Δgcs1. Interestingly, Δmgd1/Δadh1/Δgcs1 exhibited a significantly decrease in H2O2 and superoxide which was also unobserved in Δmgd1/Δgcs1 and Δadh1/Δgcs1. The activities of the antioxidative enzymes erythroascorbate peroxidase and cytochrome c peroxidase were noticeably higher in Δmgd1/Δadh1/Δgcs1 than in the other disruptants. Meanwhile, Glr1 activity severely diminished in Δmgd1/Δadh1/Δgcs1. Monitoring complementary gene transcripts between double gene-disrupted Δmgd1/Δgcs1 and Δadh1/Δgcs1 supported the concept of an unbalanced redox state independent of the Glr1 activity for Δmgd1/Δadh1/Δgcs1. Our data demonstrate the reciprocal use of Eapx1 and Ccp1 in the absence of both methylglyoxal scavengers; that being pivotal for viability in non-filamentous budding yeast.

Characterization of Haemophilus influenzae Peroxiredoxins

  • Hwang, Young-Sun;Chae, Ho-Zoon;Kim, Kang-Hwa
    • BMB Reports
    • /
    • v.33 no.6
    • /
    • pp.514-518
    • /
    • 2000
  • Two open reading frames of Haemophilus influenzae, HI0572 and HI0751, showing homology to a yeast thioredoxin peroxidase II (TPx II) and an E. coli thiol peroxidase $P_{20}$, respectively, were cloned and expressed in E. coli, and then the proteins were subsequently purified and characterized. HI0751 protein showed the thioredoxin (Trx)-dependent peroxidase activity, whereas HI0572 protein showed glutathione-dependent peroxidase. The HI0572 is the first peroxiredoxin with glutathione peroxidase activity rather than thioredoxin peroxidase. Purified HI0572 and HI0751 proteins protected specifically the inactivation of glutamine synthetase by metal catalyzed oxidation (MCO) systems composed of $Fe^{3+}$, $O_2$ and mercaptans such as dithiothreitol, ${\beta}-mercaptoethanol$ and glutathione (GSH). Unlike the HI0751 protein, the HI0572 protein was more effective in protecting glutamine synthetase from inactivation by the $GSH/Fe^{3+}/O_2$ system. It seems that these unique properties of the HI0572 protein are due to the structure containing a glutaredoxin domain at it's C-terminal in addition to a peroxiredoxin domain.

  • PDF

Effect of Maternal Selenium Nutrition on pulmonary Selenium, Glutathione Peroxidase, and Phospholipid Levels in Neonatal Rats

  • Kim, Hye-Yung
    • Journal of Nutrition and Health
    • /
    • v.27 no.9
    • /
    • pp.940-948
    • /
    • 1994
  • The present study was designed to determine if prenatal and postnatal Se nutriture affects Se concentration, glutathione peroxidase(GSHPx) activity and phospholipid distribution of the neonatal rat lung. Female SD rats were bred and fed a semipurified Se-deficient(0.04ppm, Se-) or a Se-adequate(0.5ppm, Se+) diet through pregnancy and lactation. On d 2 of lactation, maternal dietary Se had no significant effect on pulmonary Se concentration of pups. On d 16 of lactation, mean milk Se concentration in Se- dams was significantly lower than that in Se+ dams. Milk Se concentration was reflected on lung Se concentration and GSHPx activity of d 16 pups, which were dramatically decreased in Se- pups. In addition, pulmonary disaturated phosphatidyl choline/total phosphatidyl choline ratio was also significantly decreased in Se- pups, implying impaired function of pulmonary surfactant. These data indicate that adequate Se nutrition is important in the maturation of neonatal rat lungs.

  • PDF

Studies on the Causal Component of Rusty-Root on Panax ginseng I. Antioxidative Activity Oriented (적변인삼 유발 물질 구명 I. 항산화 활성을 중심으로)

  • 이성식;이명구;최광태;안영옥;권석윤;이행순;곽상수
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.113-117
    • /
    • 2000
  • To analyze the correlation between the rusty root and the antiokidative activity in ginseng (Panax ginseng C.A.Meyer) roots, the levels of antioxidative activity in various tissues of healthy and rusty roots. The superoxide dismutase activity in rusty roots (126.9 units/mg protein) was approximately 3.5 times higher than that in healthy roots. The catalase activity in rusty roots was approximately 1.6 times higher than that in healthy roots, whereas the peroxidase activity showed a slight low level in msty roots. The 1.1 diphenyl-2-picryl-hydrazyl(DPPH) free radical scavenging activity in rusty roots was approximately 2.0 times higher than that in healthy roots. The total ascorbate content in healthy roots was 166~240 $\mu\textrm{g}$/g fr. wt. depending on the tissues. Interestingly, the oxidized dehydroascorbate (DHA) content occupied more than 80% in total ascorbate content. The total ascorbate content in rusty roots was a similar level with healthy roots, but the reduced ascorbate content was 3.5~7.5 times higher than that of the healthy roots. The total glutathione content of the epidermis, cortex and stele tissues in 겨sty roots was 7.3, 4.8, 1.2 times higher than the healthy tissues, respectively. The ratio of reduced glutathione (GSH) and oxidized glutathione (GSSG) showed a similar fluctuation of total glutathione content in 겨sty roots. These results indicate that the high antioxidative activity in rusty roots may involve in overcoming the oxidative stress derived from environmental stresses.

  • PDF