• 제목/요약/키워드: glutamate receptor

검색결과 169건 처리시간 0.028초

Preparation and Characterization of Folic Acid Linked Poly(L-glutamate) Nanoparticles for Cancer Targeting

  • Lee Yong-Kyu
    • Macromolecular Research
    • /
    • 제14권3호
    • /
    • pp.387-393
    • /
    • 2006
  • Nanoparticles of Poly(L-glutamic acid) (PG) conjugated to the anticancer drug paclitaxel and targeted moiety folic acid (FA) were synthesized and characterized in vitro. The nanoparticles were designed to take advantage of FA targeting to folate receptor (FR) positive cancer cells. The chemical composition of the conjugate was characterized by $^1H-NMR$, FTIR and UV/vis spectroscopy. The selective cytotoxicity of the FA-PG-paclitaxel conjugates was evaluated in FR positive cancer cells. The interaction of the conjugate was visualized by fluorescence microscopy with results confirming the successful preparation of the conjugate and the production of nanoparticles of about 200-300 nm in diameter. The amount of paclitaxel conjugated to FA-PG was 25% by weight. Cellular uptake of the conjugate was FA dependent, and the conjugate uptake was mediated specifically by the folate receptor. These results demonstrate the improved selective toxicity and effective delivery of an anticancer drug into FR bearing cells in vitro.

Regulation of Immediate Early Gene Expression by Glutamate Receptor Activation in C6 Rat Glioma Cells

  • Lee, Jin-Koo;Kim, Yung-Hi;Choi, Seong-Soo;Suh, Hong-Won
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제5권1호
    • /
    • pp.19-25
    • /
    • 2001
  • We have studied the effects of excitatory amino acids on the expression of the c-fos and c-jun mRNA in rat C6 glioma cells. The glutamate, $N-methyl-_D-aspartate$ (NMDA), and kainic acid (KA) increased c-fos mRNA level in a concentration-dependent manner. However, they did not affect c-jun mRNA level. In addition, forskolin and phorbol 12-myristate 13-acetate (PMA) increased c-fos mRNA level. Furthermore, PMA increased c-jun mRNA level whereas forskolin downregulated c-jun mRNA level. The glutamate, NMDA and KA, at a concentration of 0.25 mM, did not affect the basal c-fos and c-jun mRNA levels, and also did not affect forskolin- and PMA-induced responses. Furthermore, both forskolin and PMA itself increased the phosphorylation of ERK (extracellular signal regulated kinase) and CREB (cyclicAMP responsible element binding protein) proteins. The KA, NMDA, and glutamate did not affect forskolin- induced increase of ERK and CREB phosphorylation. The KA decreased PMA-induced increase of phosphorylation of ERK and CREB proteins, whereas glutamate and NMDA did not affect the phosphorylation of ERK and CREB proteins induced by PMA. These findings suggest that, in C6 glioma cells, c-fos mRNA induction induced by EAAs is not mediated by phosphorylation of ERK and CREB proteins.

  • PDF

Actions of Group I Metabotropic Glutamate Receptor Agonist on Synaptic Transmission and Ionic Currents in Rat Medial Vestibular Nucleus Neurons

  • Lee, Hae-In;Chun, Sang-Woo
    • International Journal of Oral Biology
    • /
    • 제34권4호
    • /
    • pp.215-222
    • /
    • 2009
  • Medial vestibular nucleus (MVN) neurons are involved in the reflex control of the head and eyes, and in the recovery of vestibular function after the formation of peripheral vestibular lesions. In our present study, whole cell patch clamp recordings were carried out on MVN neurons in brainstem slices from neonatal rats to investigate the actions of a group I metabotropic glutamate receptor (mGluR) agonist upon synaptic transmission and ionic currents. Application of the mGluR I agonist (S)-3,5- dihydroxyphenylglycine (DHPG) increased the frequency of miniature inhibitory postsynaptic currents (mIPSCs) but had no effect upon amplitude distributions. To then identify which of mGluR subtypes is responsible for the actions of DHPG in the MVN, we employed two novel subtype selective antagonists. (S)-(+)-$\alpha$-amino-a-methylbenzeneacetic acid (LY367385) is a potent competitive antagonist that is selective for mGluR1, whereas 2-methyl-6-(phenylethynyl)-pyridine (MPEP) is a potent noncompetitive antagonist of mGluR5. Both LY367385 and MPEP antagonized the DHPG-induced increase of mIPSCs, with the former being more potent. DHPG was also found to induce an inward current, which can be enhanced under depolarized conditions. This DHPG-induced current was reduced by both LY367385 and MPEP. The DHPG-induced inward current was also suppressed by the PLC blocker U-73122, the $IP_3$ receptor antagonist 2-APB, and following the depletion of the intracellular $Ca^{2+}$ pool by thapsigargin. These data suggest that the DHPG-induced inward current may be mainly regulated by the intracellular $Ca^{2+}$ store via the PLC-$IP_3$ pathway. In conclusion, mGluR I, via pre- and postsynaptic actions, may modulate the excitability of the MVN neurons.

Inhibitory Effect of Ginsenosides on NMDA Receptor-mediated Signals in Rat Hippocampal Neurons

  • Kim Sunoh;Choo Min-Kyung;Nah Seung-Yeol;Kim Dong-Hyun;Rhim Hyewhon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 2002년도 학술대회지
    • /
    • pp.531-544
    • /
    • 2002
  • Ginseng is the best known and most popular herbal medicine used worldwide. Ameliorating effects of ginseng were observed on the models of scopolamine-induced, aged or hippocampal lesioned learning and memory deficits. Further beneficial effects of ginseng were observed on neuronal cell death associated with ischemia or glutamate toxicity. In spite of these beneficial effects of ginseng on the CNS, little scientific evidence shows at the cellular level. In the present study, we have employed cultures of rat hippocampal neurons and examined the direct modulation of ginseng on NMDA receptor-induced changes in $[Ca^{2+}]_i$ and -gated currents using fura-2-based digital imaging and perforated whole-cell patch-clamp techniques, respectively. We found that ginseng total saponins inhibited NMDA-induced but less effectively glutamate-induced increase in $[Ca^{2+}]_i$ Ginseng total saponins also modulated $Ca^{2+}$ transients evoked by depolarization with 50 mM KCI along with its own effects on $[Ca^{2+}]_i$. Among ginsenosides tested, ginsenoside $Rg_3$ was found to be the most potent component for ginseng actions on NMDA receptors. Furthermore, we examined the inhibitory effects ofbiotransformants of ginsenosides on NMDA receptor using purified stereoisomers of ginsenosides. 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_3$, produced the strongest inhibition while 20(S)-ginsenoside $Rh_1$ and Compound K produced the moderate inhibition on NMDA-induced increase in $[Ca^{2+}]_i$. The data obtained suggest that the inhibition of NMDA receptors by ginseng, in particular by 20(S)-ginsenoside $Rg_3$ and its metabolite, 20(S)-ginsenoside $Rh_2$, could be one of mechanisms for ginsengmediated neuroprotective actions.

  • PDF

뇌허혈 손상에 있어서 해마-세포외액내 Glutamate와 Polyamine 농도의 변동에 관한 연구 (Changes of Glutamate and Polyamine Levels of Hippocampal Microdialysates in Response to Occlusion of Both Carotid Arteries in Mongolian Gerbils)

  • 신경호;김형건;최상현;조소현;천연숙;전보권
    • 대한약리학회지
    • /
    • 제30권3호
    • /
    • pp.273-289
    • /
    • 1994
  • 뇌-허혈후 나타나는 신경세포의 손상에 glutamate의 과다한 유리와 그의 N-methyl-D-aspartate (NMDA) 수용체: calcium 통로 활성작용 및 polyamine중 putrescine의 증가로 인한 신경세포내 $[Ca^{2+}]$의 상승과 관련 있다는 보고들이 있다. 본 연구에서는 Mongolian gerbil에서 5분간 경동맥을 차단하여 뇌-허혈을 가한후 재관류시 해마의 세포외액내 polyamine, glutamate, acetylcholine농도, 해마의 $[^3H]MK-801$ 결합능의 변동 및 해마조직소견의 변동에 미치는 비가역성 ornithine decarboxylase (ODC) 억제제인 difluoromethylornithine (DFMO), diamine oxidase (DAO) 억제제인 aminoguanidine (AG), NMDA 수용체 길항제인 MK-801 및 calcium 통로 차단제인 nimodipine (NM)의 효과를 비교-검색하였다. 해마 세포외액내 polyamine, glutamate 및 acetylcholine은 microdialysis probe를 해마의 CA1부위에 위치시킨 후 나온 분취액을 HPLC와 luminometer를 사용하여 측정하였고, 해마조직에서 신경세포의 손상은 cresyl-violet 염색법으로 관찰하였다. 허혈후 해마 세포외액내 putrescine농도는 5분이내에 급속히 증가하여 뇌-허혈후 96시간까지 증가되는 경향을 보였으며 AG과 MK-801 처치시 saline 처치군에 비하여 증가정도가 상승되었으나 NM과 DFMO 처치로 putrescine의 증가는 감소되는 경향을 보였다. 해마 세포외액내 glutamate의 농도는 허혈후 5분 이내에 9배이상 유의하게 증가한 후 급격히 감소되어 25분후에는 정상치로 회복되었으나, 이같은 변동은 AG, DFMO 및 MK-801 처치로 영향을 받지 않았고 NM 처치로는 glutamate의 증가가 둔화되는 경향을 보였다. 해마 세포외액내 acetylcholine 농도는 허혈에 의하여 큰변동이 없었으나 허혈전 acetylcholine농도는 DFMO나 MK-801처치로 감소되는 경향을 보였다. 해마-synaptosome막의 $[^3H]MK-801$ 결합능은 saline 처치군에 비하여 AG과 MK-801 처치로 유의하게 감소되었다. 해마의 조직소견상 AG과 NM은 허혈후의 신경세포손상을 억제하고, MK-801은 손상의 예방에 별 영향을 주지 못하였으나 DFMO는 허혈에 의한 신경세포의 손상을 더욱 악화시키는 경향을 보였다. 이상의 결과로 미루어 NM과 다른기전으로 AG은 해마신경세포의 손상을 NMDA-수용체: calcium 통로의 활성화를 조절하여 허혈성 뇌손상을 억제할 수 있으리라 사료된다.

  • PDF

Protective Effect of Fangchinoline on Cyanide-Induced Neuro-toxicity in Cultured Rat Cerebellar Granule Cells

  • Cho, Soon-Ok;Seong, Yeon-Hee
    • Archives of Pharmacal Research
    • /
    • 제25권3호
    • /
    • pp.349-356
    • /
    • 2002
  • The present study was performed to examine the effect of fangchinoline, a bis- benzylisoquinoline alkaloid, which exhibits the characteristics of a $Ca^{2+}$ channel blocker, on cyanide-induced neurotoxicity using cultured rat cerebellar granule neurons. NaCN produced a concentration-dependent reduction of cell viability, which was blocked by MK-801, an N-methyl-D-aspartate (NMDA) receptor antagonist, verapamil, L-type$Ca^{2+}$channel blocker, and L-NAME, a nitric oxide synthase inhibitor. Pretreatment with fangchinoline over a concentration range of 0.1 to 10 $\mu$M significantly decreased the NaCN-induced neuronal cell death, glutamate release into medium, and elevation of $[Ca^{2+}]_i$ and oxidants generation. These results suggest that fangchinoline may mitigate the harmful effects of cyanide-induced neuronal cell death by interfering with $[Ca^{2+}]_i$influx, due to its function as a $Ca^{2+}$ channel blocker, and then by inhibiting glutamate release and oxidants generation.

West syndrome with hyperkinesia and cortical visual impairment: A case report of GRIN1 encephalopathy

  • Choi, Seul A;Kim, Young Ok
    • Journal of Genetic Medicine
    • /
    • 제18권1호
    • /
    • pp.55-59
    • /
    • 2021
  • West syndrome (WS) presenting with infantile spasms, developmental delay, and hypsarrhythmia has genetic etiology in some patients. Movement disorders or visual impairment that share genetic underpinnings with infantile spasms can provide diagnostic clues for specific genetic mutations. Mutations of the GRIN1 gene encoding the glutamate receptor inotropic N-methyl-D-aspartate subunit can result in WS with hyperkinetic movements, cortical visual impairment, autistic features, and bilateral polymicrogyria. An 11-month-old boy with WS showed hyperkinetic movements and visual impairment. Brain magnetic resonance imaging and metabolic investigations revealed no abnormalities. Whole-exome sequencing revealed a novel likely pathogenic variant (c.1561_1563del; p.Asn521del) of GRIN1 (NM_007327.3). The proband was treated with vigabatrin and became seizure-free within one week. Notably, the cortical blindness improved within 3 months and the hyperkinetic movements resolved one year after the proband became seizure-free. To the best of our knowledge, this is the first report of GRIN1 encephalopathy in Koreans.

Glycine- and GABA-mimetic Actions of Shilajit on the Substantia Gelatinosa Neurons of the Trigeminal Subnucleus Caudalis in Mice

  • Yin, Hua;Yang, Eun-Ju;Park, Soo-Joung;Han, Seong-Kyu
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제15권5호
    • /
    • pp.285-289
    • /
    • 2011
  • Shilajit, a medicine herb commonly used in Ayurveda, has been reported to contain at least 85 minerals in ionic form that act on a variety of chemical, biological, and physical stressors. The substantia gelatinosa (SG) neurons of the trigeminal subnucleus caudalis (Vc) are involved in orofacial nociceptive processing. Shilajit has been reported to be an injury and muscular pain reliever but there have been few functional studies of the effect of Shilajit on the SG neurons of the Vc. Therefore, whole cell and gramicidin-perfotrated patch clamp studies were performed to examine the action mechanism of Shilajit on the SG neurons of Vc from mouse brainstem slices. In the whole cell patch clamp mode, Shilajit induced short-lived and repeatable inward currents under the condition of a high chloride pipette solution on all the SG neurons tested. The Shilajit-induced inward currents were concentration dependent and maintained in the presence of tetrodotoxin (TTX), a voltage gated $Na^+$ channel blocker, CNQX, a non-NMDA glutamate receptor antagonist, and AP5, an NMDA receptor antagonist. The Shilajit-induced responses were partially suppressed by picrotoxin, a $GABA_A$ receptor antagonist, and totally blocked in the presence of strychnine, a glycine receptor antagonist, however not affected by mecamylamine hydrochloride (MCH), a nicotinic acetylcholine receptor antagonist. Under the potassium gluconate pipette solution at holding potential 0 mV, Shilajit induced repeatable outward current. These results show that Shilajit has inhibitory effects on the SG neurons of Vc through chloride ion channels by activation of the glycine receptor and $GABA_A$ receptor, indicating that Shilajit contains sedating ingredients for the central nervous system. These results also suggest that Shilajit may be a potential target for modulating orofacial pain processing.

Cytoprotective Effects of Dihydrolipoic Acid and Lipoic Acid on the Oxidative Stress in Cultured Rat Cortical Neurons

  • Kim, Won-Ki
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제2권4호
    • /
    • pp.427-433
    • /
    • 1998
  • In brain hypoxic-ischemia, an excess release of glutamate and a marked production of reactive oxygen species (ROS) occur in neuronal and non-neuronal cells. The present study investigated the effect of the biological antioxidants dihydrolipoic acid (DHLA) and lipoic acid (LA) on N-methyl-D-aspartate (NMDA)- and ROS-induced neurotoxicity in cultured rat cortical neurons. DHLA enhanced NMDA-evoked rises in intracellular calcium concentration ($[Ca^{2+}]_i$). In contrast, LA did not alter the NMDA-evoked calcium responses but decreased after a brief treatment of dithiothreitol (DTT), which possesses a strong reducing potential. Despite the modulation of NMDA receptor-mediated rises in $[Ca^{2+}]_i$, neither DHLA nor LA altered the NMDA receptor-mediated neurotoxicity, as assessed by measuring the amount of lactate dehydrogenase released from dead or injured cells. DHLA, but not LA, prevented the neurotoxicity induced by xanthine/xanthine oxidase-generated superoxide radicals. Both DHLA and LA decreased the glutathione depletion-induced neurotoxicity. The present data may indicate that biological antioxidants DHLA and LA protect neurons from ischemic injuries via scavenging oxygen free radicals rather than modulating the redox modulatory site(s) of NMDA receptor.

  • PDF

흰쥐 미숙 대뇌피질 신경세포에서 Quisqualate로 유발된 흥분성 세포독성에 대한 spermine의 영향 (Effects of Spermine on Quisqualate-induced Excitotoxicity in Rat Immature Cortical Neurons)

  • 조정숙
    • 약학회지
    • /
    • 제43권4호
    • /
    • pp.535-540
    • /
    • 1999
  • Glutamate (Glu) receptor-mediated excitoxicity has been implicated in many acute and chronic types of neurological disorders. Exposure of mature rat cortical neurons (15-18 days in culture) to the various concentrations of Glu resulted in a marked neuronal death, whereas immature rat cortical neurons (4∼5 days in culture) were resistant to the Glu-induced toxicity. Glu receptor subtype-specific agonists showed differential extent of toxicity in the immature neurons. The neurons treated with NMDA or kainate (KA) did not exhibit damage. However, quisqualate (QA) treatment induced a considerable cell death (36.1%) in immature enurons. The non-NMDA antagonist DNQX did not reduce this response. Interestingly, the QA-induced toxicity was potentiated by spermine in a concentration-dependent manner. Again, the spermine-enhanced damage was not altered by the polyamine antagonist ifenprodil. Taken together, unlike NMDA or KA, QA can induce neurotoxicity in immature rat cortical neurons and the QA-induced toxicity was potentiated by spermine. The lack of antagonizing effects of DNQX and ifenprodil on QA-induced toxicity and the potentiated toxicity by spermine, respectively, implies that both QA receptor and the polyamine site of NMDA receptor may not mediate the neurotoxicity observed in this study, and that a distinct mechanism(s) may be involved in excitotoxicity in immature neurons.

  • PDF