• Title/Summary/Keyword: glucose transporter

Search Result 205, Processing Time 0.027 seconds

Effects of Grasshopper (Oxya chinensis sinuosa Mistshenko) Powder and Aerobic Exercise on Energy Metabolism in ICR Mice (벼메뚜기(Oxya chinensis sinuosa Mistshenko) 분말 섭취와 유산소성 운동훈련에 의한 마우스의 에너지 대사 변화)

  • Kim, Yiseul;Jeon, Byungduk;Choi, Seokrip;Kim, Woocheol;Lee, Dong Woon;Ryu, Sungpil
    • Korean journal of applied entomology
    • /
    • v.55 no.1
    • /
    • pp.53-62
    • /
    • 2016
  • The purpose of this study was to analyze the effect of grasshopper (Oxya chinensis sinuosa) powder ingestion with/without aerobic exercise (treadmill running) on energy metabolism. To achieve this purpose, 28 Institute of Cancer Research (ICR) mice were divided into four groups: normal diet control group (CON), a normal diet with exercise control group (COEX), a grasshopper powder-supplemented diet group (GH), and a grasshopper powder-supplemented diet with exercise group (GHEX). Duration of the powder ingestion and aerobic exercise training were 6 weeks. Body weight gain ratio was not significant. Fat mass significantly decreased in GH and GHEX. There were no changes in blood glutamic oxaloacetic transaminase and glutamic pyruvic transaminase levels between groups. Glucose transporter type 2 and glucose transporter type 4 protein levels were not significantly different between groups. Fibronectin type III domain-containing protein 5 level was the highest in GHEX. AMP-activated protein kinase level significantly increased in GHEX compared to the levels in the other groups. Glycogen synthase kinase 3 beta protein level was reduced in GHEX compared to that in CON. These results suggest that grasshopper powder ingestion and endurance exercise training influence energy metabolism.

Carbohydrate Metabolism in Preimplantation Stage Embryos and the Role of Metabolites (착상전 초기 배아에서 탄수화물 대사와 그 대사물의 역할)

  • Cheon, Yong-Pil
    • Development and Reproduction
    • /
    • v.12 no.1
    • /
    • pp.19-30
    • /
    • 2008
  • Proper development of fertilized oocyte to blastocyst is a key step in mammalian development to implantation. During development of preimplantation embryos, the mammalian embryo needs supply the energy substrate for keep viability. Usually mammalian oocyte get substrate especially energy substrate from oviduct and uterus, because it does not store much substrate into cytoplasm during oogenesis. Carbohydrates are known as a main energy substrate for preimplantation stage embryos. Glucose, lactate and pyruvate are essential component in preimplantation embryo culture media and there are stage specific preferences to them. Glucose transporter and $H^+$-monocarboxylate cotransporter are a main mediator for carbohydrate transport and those expression levels are primarily under the control of intrinsic or extrinsic factors like insulin and glucose. Other organic substances, amino acids, lipids and nucleotides are used as energy substance and cellular regulation factor. Though since 1960s, successful development of fertilized embryo to blastocyst has been accomplished with chemically defined medium for example BWW and give rise to normal offspring in mammals, the role of metabolites and the regulation of intermediary metabolism are still poorly understood. Glucose may permit expression of metabolic enzymes and transporters in compacting morula, capable of generating the energy required for blastocyst formation. In addition, it has been suggested that the cytokines can modulate the metabolic rate of carbohydrate in embryos and regulate the preimplantation embryonic development through control the metabolic rate. Recently we showed that lactate can be used as a mediator for preimplantation embryonic development. Those observations indicate that metabolites of carbohydrate are required by the early embryo, not only as an energy source, but also as a key substrate for other regulatory and biosynthetic pathways. In addition metabolites of carbohydrate may involve in cellular activity during development of preimplantation embryos. It is suggested that through these regulation and with other regulation mechanisms, embryo and uterus can prepare the embryo implantation and further development, properly.

  • PDF

Characteristics of [$^{18}F$]fluorodeoxyglucose Uptake in Human Colon Cancer Cells (사람 대장암 세포주의 [$^{18}F$fluorodeoxyglucose 섭취의 특징)

  • Kim, Chae-Kyun;Jeong, Jae-Min;Lee, Myung-Chul;Koh, Chang-Soon;Chung, June-Key
    • The Korean Journal of Nuclear Medicine
    • /
    • v.31 no.3
    • /
    • pp.381-387
    • /
    • 1997
  • Cancer tissues are characterized by increased glucose uptake. $^{18}F$-fluorodeoxyglucose(FDG), a glucose analogue is used for the diagnosis of cancer in PET studies. This study was aimed to compare the glucose uptake and glucose transporter 1(GLUT1) expression in various human colon cancer cells. We measured FDG uptake by cell retention study and expression of GLUT1 using Western blotting. Human colon cancer cells, SNU-C2A, SNU-C4 and SNU-C5, were used. The cells were incubated with $1{\mu}Ci/ml$ of FDG in HEPES-buffered saline for one hour. The FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were $16.8{\pm}1.36,\;12.3{\pm}5.55$ and $61.0{\pm}2.17cpm/{\mu}g$ of protein, respectively. Dose-response and time-course studies represent that FDG uptake of cancer cells were dose dependent and time dependent. The rate of FDG uptake of SNU-C2A, SNU-C4 and SNU-C5 were $0.29{\pm}0.03,\;0.21{\pm}0.09$ and $1.07{\pm}0.07cpm/min/{\mu}g$ of protein, respectively. Western blot analysis showed that the GLUT1 expression of SNU-C5 was significantly higher than those of SNU-C2A and SNU-C4. These results represent that FDG uptake into human colon cancer cells are different from each other. In addition, FDG uptake and expression of GLUT1 are closely related in human colon cancer cells.

  • PDF

The relationship between glucagon levels and cardiovascular risk in patients with type 2 diabetes (제2형 당뇨병환자에서 혈중 글루카곤 농도와 심혈관 질환 위험도의 관계)

  • Jeong, Wooseok;Moon, Jaecheol;Yoo, Soyeon
    • Journal of Medicine and Life Science
    • /
    • v.17 no.2
    • /
    • pp.47-52
    • /
    • 2020
  • Glucagon regulates glucose and fat metabolism as well as being involved in the production of ketone bodies. The new antidiabetic drug, a sodium-glucose co-transporter-2 inhibitor, increases glucagon, and reduces the risk of cardiovascular death and hospitalization due to heart failure. The presence of metabolic syndrome is an important risk factor for cardiovascular diseases(CVD) in type 2 diabetes(T2DM) patients. We, thus, investigated the association between glucagon levels and metabolic syndrome in T2DM patients. This cross-sectional study involved 317 T2DM patients. Fasting and postprandial (30 min after ingestion of a standard mixed meal) glucagon levels were measured. Metabolic syndrome was defined according to the criteria of the International Diabetes Federation. A multiple regression logistic analysis was employed for statistical evaluation. A total of 219 (69%) subjects had metabolic syndrome. The fasting and postprandial glucagon levels did not differ between the group with metabolic syndrome and the group without. Postprandial glucagon levels increased significantly with the increase in the number of metabolic syndrome components, but the fasting levels did not. However, a hierarchical logistic regression analysis revealed that the postprandial glucagon levels did not contribute significantly to metabolic syndrome even after adjusting for other covariates. Fasting and postprandial glucagon levels are not associated with metabolic syndrome in T2DM patients. However, further studies are needed to investigate the relationship between glucagon and cardiovascular risk in patients with T2DM.

AtMyb56 Regulates Anthocyanin Levels via the Modulation of AtGPT2 Expression in Response to Sucrose in Arabidopsis

  • Jeong, Chan Young;Kim, Jun Hyeok;Lee, Won Je;Jin, Joo Yeon;Kim, Jongyun;Hong, Suk-Whan;Lee, Hojoung
    • Molecules and Cells
    • /
    • v.41 no.4
    • /
    • pp.351-361
    • /
    • 2018
  • Sucrose is a crucial compound for the growth and development of plants, and the regulation of multiple genes depends on the amount of soluble sugars present. Sucrose acts as a signaling molecule that regulates a proton-sucrose symporter, with its sensor being the sucrose transporter. Flavonoid and anthocyanin biosynthesis are regulated by sucrose, and sucrose signaling can affect flavonoid and anthocyanin accumulation. In the present study, we found a Myb transcription factor affecting accumulation of anthocyanin. AtMyb56 showed an increase in its expression in response to sucrose treatment. Under normal conditions, anthocyanin accumulation was similar between Col-0 (wild type) and atmyb56 mutant seedlings; however, under sucrose treatment, the level of anthocyanin accumulation was lower in the atmyb56 mutant plants than in Col-0 plants. Preliminary microarray analysis led to the investigation of the expression of one candidate gene, AtGPT2, in the atmyb56 mutant. The phosphate translocator, which is a plastidial phosphate antiporter family, catalyzes the import of glucose-6-phosphate (G-6-P) into the chloroplast. AtGPT2 gene expression was altered in atmyb56 seedlings in a sucrose-dependent manner in response to circadian cycle. Furthermore, the lack of AtMyb56 resulted in altered accumulation of maltose in a sucrose-dependent manner. Therefore, the sucrose responsive AtMyb56 regulates AtGPT2 gene expression in a sucrose-dependent manner to modulate maltose and anthocyanin accumulations in response to the circadian cycle.

Comparative Effects of $PKB-{\alpha}$ and $PKC-{\zeta}$ on the Phosphorylation of GLUT4-Containing Vesicles in Rat Adipocytes

  • Hah, Jong-Sik
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.4 no.6
    • /
    • pp.487-496
    • /
    • 2000
  • Insulin stimulates glucose transport in muscle and fat cells by promoting the translocation of glucose transporter (GLUT4) to the cell surface. Phosphatidylinositide 3-kinase (PI3-kinase) has been implicated in this process. However, the involvement of protein kinase B (PKB)/Akt and $PKC-{\zeta}$, those are known as the downstream target of PI3-kinase in regulation of GLUT4 translocation, is not known yet. An interesting possibility is that these protein kinases phosphorylate GLUT4 directly in this process. In the present study, $PKB-{\alpha}$ and $PKC-{\zeta}$ were added exogenously to GLUT4-containing vesicles purified from low density microsome (LDM) of the rat adipocytes by immunoadsorption and immunoprecipitation for direct phosphorylation of GLUT4. Interestingly GLUT4 was phosphorylated by $PKC-{\zeta}$ and its phosphorylation was increased in insulin stimulated state but GLUT4 was not phosphorylated by $PKB-{\alpha}.$ However, the GST-fusion proteins, GLUT4 C-terminal cytoplasmic domain (GLUT4C) and the entire major GLUT4 cytoplasmic domain corresponding to N-terminus, central loop and C-terminus in tandem (GLUT4NLC) were phosphorylated by both $PKB-{\alpha}$ and $PKC-{\zeta}.$ The immunoblots of $PKC-{\zeta}$ and $PKB-{\alpha}$ antibodies with GLUT4-containing vesicles preparation showed that $PKC-{\zeta}$ was co-localized with the vesicles but not $PKB-{\alpha}.$ From the above results, it is clear that $PKC-{\zeta}$ interacts with GLUT4-containing vesicles and it phosphorylates GLUT4 protein directly but $PKB-{\alpha}$ does not interact with GLUT4, suggesting that insulin-elicited signals that pass through PI3-kinase subsequently diverge into two independent pathways, an Akt pathway and a $PKC-{\zeta}$ pathway, and that later pathway contributes, at least in part, insulin stimulation of GLUT4 translocation in adipocytes via a direct GLUT4 phosphorylation.

  • PDF

Potential mechanism of anti-diabetic activity of Picrorhiza kurroa

  • Husain, Gulam Mohammed;Rai, Richa;Rai, Geeta;Singh, Harikesh Bahadur;Thakur, Ajit Kumar;Kumar, Vikas
    • CELLMED
    • /
    • v.4 no.4
    • /
    • pp.27.1-27.5
    • /
    • 2014
  • Picrorhiza kurroa Royle ex Benth. (Scrophulariaceae) is a traditional Ayurvedic herb known as Kutki. It is used as a remedy for diabetes by tribes of North Eastern Himalayan region of India. Present study was conducted to explore the mechanism of antidiabetic activity of standardized aqueous extract of Picrorhiza kurroa (PkE). PkE (100 and 200 mg/kg/day) was orally administered to streptozotocin induced diabetic rats, for 14 consecutive days. Plasma insulin levels were measured and pancreas of rat was subjected to histopathological investigations. Glucose transporter type 4 (GLUT-4) protein content in the total membrane fractions of soleus muscle was estimated by Western blot analysis. Plasma insulin level was significantly increased along with concomitant increase in GLUT-4 content of total membrane fractions of soleus muscle of diabetic rats treated with extract. There was evidence of regeneration of ${\beta}$-cells of pancreatic islets of PkE treated group in histopathological examinations. PkE increased the insulin-mediated translocation of GLUT-4 from cytosol to plasma membrane or increased GLUT-4 expression, which in turn facilitated glucose uptake by skeletal muscles in diabetic rats.

Effects of Fluvastatin on the Pharmacokinetics of Repaglinide: Possible Role of CYP3A4 and P-glycoprotein Inhibition by Fluvastatin

  • Lee, Chong-Ki;Choi, Jun-Shik;Bang, Joon Seok
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.17 no.3
    • /
    • pp.245-251
    • /
    • 2013
  • The purpose of this study was to investigate the effects of fluvastatin on the pharmacokinetics of repaglinide in rats. The effect of fluvastatin on P-glycoprotein and CYP3A4 activity was evaluated. The pharmacokinetic parameters and blood glucose concentrations were also determined after oral and intravenous administration of repaglinide to rats in the presence and absence of fluvastatin. Fluvastatin inhibited CYP3A4 activity in a concentration-dependent manner with a 50% inhibition concentration($IC_{50}$) of 4.1 ${\mu}M$ and P-gp activity. Compared to the oral control group, fluvastatin significantly increased the AUC and the peak plasma level of repaglinide by 45.9% and 22.7%, respectively. Fluvastatin significantly decreased the total body clearance (TBC) of repaglinide compared to the control. Fluvastatin also significantly increased the absolute bioavailability (BA) of repaglinide by 46.1% compared to the control group. Moreover, the relative BA of repaglinide was 1.14- to 1.46-fold greater than that of the control. Compared to the i.v. control, fluvastatin significantly increased the $AUC_{0-{\infty}}$ of i.v. administered repaglinide. The blood glucose concentrations showed significant differences compared to the oral controls. Fluvastatin enhanced the oral BA of repaglinide, which may be mainly attributable to the inhibition of the CYP3A4-mediated metabolism of repaglinide in the small intestine and/or liver, to the inhibition of the P-gp efflux transporter in the small intestine and/or to the reduction of TBC of repaglinide by fluvastatin. The study has raised the awareness of potential interactions during concomitant use of repaglinide with fluvastatin. Therefore, the concurrent use of repaglinide and fluvastatin may require close monitoring for potential drug interactions.

The Change of Taurine Transport in Variable Stress States through the Inner Blood-Retinal Barrier using In Vitro Model

  • Kang, Young-Sook;Lee, Na-Young;Chung, Yeon-Yee
    • Biomolecules & Therapeutics
    • /
    • v.17 no.2
    • /
    • pp.175-180
    • /
    • 2009
  • Taurine is the most abundant free amino acid in the retina and transported into retina via taurine transporter (TauT) at the inner blood-retinal barrier (iBRB). In the present study, we investigated whether the taurine transport at the iBRB is regulated by oxidative stress or disease-like state in a conditionally immortalized rat retinal capillary endothelial cell line (TR-iBRB) used as an in vitro model of iBRB. First, [$^3H$]taurine uptake and efflux by TR-iBRB were regulated in the presence of extracellular $Ca^{2+}$. [$^3H$]Taurine uptake was inhibited and efflux was enhanced under $Ca^{2+}$ free condition in the cells. In addition, oxidative stress inducing agents such as tumor necrosis factor-$\alpha$ (TNF-$\alpha$), lipopolysaccharide (LPS), diethyl maleate (DEM) and glutamate increased [$^3H$]taurine uptake and decreased [$^3H$]taurine efflux in TR-iBRB cells. Whereas, 3-morpholinosydnonimine (SIN-1), which is known to NO donor decreased [$^3H$]taurine uptake. Lastly, TR-iBRB cells exposed to high glucose (25 mM) medium and the [$^3H$]taurine uptake was reduced about 20% at the condition. Also, [$^3H$]taurine uptake was decreased by cytochalasin B, which is known to glucose transport inhibitor. In conclusion, taurine transport in TR-iBRB cells is regulated diversely at extracellular $Ca^{2+}$, oxidative stress and hyperglycemic condition. It suggested that taurine would play a role as a retinal protector in diverse disease states.

$PPAR_{\gamma}$ Ligand-binding Activity of Fragrin A Isolated from Mace (the Aril of Myristica fragrans Houtt.)

  • Lee, Jae-Young;Kim, Ba-Reum;Oh, Hyun-In;Shen, Lingai;Kim, Naeung-Bae;Hwang, Jae-Kwan
    • Food Science and Biotechnology
    • /
    • v.17 no.6
    • /
    • pp.1146-1150
    • /
    • 2008
  • Peroxisome proliferator-activated receptor-gamma ($PPAR_{\gamma}$), a member of the nuclear receptor of ligand-activated transcription factors, plays a key role in lipid and glucose metabolism or adipocytes differentiation. A lignan compound was isolated from mace (the aril of Myristica fragrans Houtt.) as a $PPAR_{\gamma}$ ligand, which was identified as fragrin A or 2-(4-allyl-2,6-dimethoxyphenoxy)-1-(4-hydroxy-3-methoxyphenyl)-propane. To ascertain whether fragrin A has $PPAR_{\gamma}$ ligand-binding activity, it was performed that GAL-4/$PPAR_{\gamma}$ transactivation assay. $PPAR_{\gamma}$ ligand-binding activity of fragrin A increased 4.7, 6.6, and 7.3-fold at 3, 5, and $10{\mu}M$, respectively, when compared with a vehicle control. Fragrin A also enhanced adipocytes differentiation and increased the expression of $PPAR_{\gamma}$ target genes such as adipocytes fatty acid-binding protein (aP2), lipoprotein lipase (LPL), and phosphoenol pyruvate carboxykinase (PEPCK). Furthermore, it significantly increased the expression level of glucose transporter 4 (GLUT4). These results indicate that fragrin A can be developed as a $PPAR_{\gamma}$ agonist for the improvement of insulin resistance associated with type 2 diabetes.