• 제목/요약/키워드: glucose release

검색결과 171건 처리시간 0.019초

관류 흰쥐 간에서 1,2-Dioctanoyl-sn-Glycerol에 의한 글루코오스의 유리작용 (Glucose Release Induced by 1,2-Dioctanoyl-sn-Glycerol in Perfused Rat Liver)

  • 황영은;문은순;김미영
    • 약학회지
    • /
    • 제35권6호
    • /
    • pp.509-514
    • /
    • 1991
  • The effect of diacylglycerol on glucose release was studied by using 1,2-dioctanoyl-sn-glycerol ($diC_8$), a cell permeable diacylglycerol, in perfused rat liver. The glucose release was increased by $diC_8(50\;{\mu}M$), and the effect was depended on calcium ions. The increment of glucose release by $diC_8(50\;{\mu}M$) was inhibited by indomethacin ($50\;{\mu}M$); the amount of glucose release was almost the same with that of control group. Arachidonic acid($200\;{\mu}M$) also increased glucose release and the release was inhibited by indomethacin. There was no synergistic effect on glucose release by the combination of $diC_8(50\;{\mu}M$) and phenylephrine($10\;{\mu}M$).

  • PDF

시상하부 조각에서 내재성 카테콜아민의 분비에 대한 포도당의 조절작용 (Glucose Modulation of Release of Endogenous Catecholamines from Hypothalamic Fragments in Vitro)

  • 정전섭;황형식;위명복;송동근;김용식;김영희
    • 대한약리학회지
    • /
    • 제29권2호
    • /
    • pp.183-188
    • /
    • 1993
  • 시상하부 조각에서 카테콜아민의 분비에 대한 포도당의 영향을 관찰하였다. 카테콜아민의 기초분비는 포도당의 농도$(5{\sim}30mM)$에 반비례하였다. Tetrodotoxin $(10\;{\mu}M)$의 존재하에서 카테콜아민의 기초분비에 대한 포도당의 억제 작용은 대부분 유지되었으나, 도파민에 대한 30 mM 포도당의 억제 작용은 거의 봉쇄되었다. Tetrodotoxin $(10\;{\mu}M)$과 desipramine $(3\;{\mu}M)$의 존재하에서는 카테콜아민의 기초분비에 대한 포도당의 영향이 없었다. 이상의 결과는 포도당이 transsynaptic action 뿐 아니라 카테콜아민 신경세포 말단에 대한 직접 작용을 통하여 카테콜아민의 분비를 조절할 것임을 시사한다. 카테콜아민의 분비에 대한 포도당의 조절작용은 당뇨상태에서의 시상하부 카테콜아민 대사의 변화를 적어도 부분적으로는 설명할 수 있으리라 사료된다.

  • PDF

흰쥐 해마 절편에서 산소고갈에 의한 [$^3H$-5-hydroxytryptamine 유리변동에 미치는 포도당고갈의 영향 (The Effect of Glucose Deprivation on the Oxygen Deprivation-induced Changes of [[$^3H$]-5-hydroxytryptamine Release in Rat Hippocampal Slices)

  • 이경은
    • Toxicological Research
    • /
    • 제14권4호
    • /
    • pp.483-488
    • /
    • 1998
  • During cerebral ischemia two important factors such as hypoxia and reduction of glucose can act as modulating stressor affecting the release of amine neurotransmitters including 5-hydroxytryptamine (5-HT). This study was performed to investigate the effect of glucose deprivation on the oxygen deprivation-induced changes of [3H]-5-HT release in the rat hippocampal slices. Experimental groups were divided into 4 groups for this study: normoxic/normoglycemic group, oxygen-deprived group, glucose-deprived group, and oxygen/glucose-deprived group. The hippocampus of rat brain was sliced by 400 $\mu\textrm{m}$ thickness with manual chopper. After 30 minutes preincubation in the normal buffer, the slices were incubated for 20 min in buffer containing [3H]-5-HT (0.1 M, 74 $\mu\textrm$Ci) for uptake. To measure the release of [3H]-5-HT into the buffer, the incubation medium was drained of and refilled with fresh buffer every ten minutes through a sequence of 14 tubes. Oxygen deprivation by gassing with 95% $N_2$/5% $CO_2$ and/or glucose deprivation was done in the 6th and 7th tube. The radioactivities in each buffer and the tissue were counted using scintillation counter. The results were expressed as fractional release. When slices were exposed to oxygen-deprived media for 20 min, the diminution followed by the rebound release of [3H]-5-HT was observed during the post-oxygen deprived period. However, glucose deprivation or oxygen/glucose deprivation markedly increased the release of [3H]-5-HT. which was opposite to the pattern observed in oxygen-deprived group. These results suggested that oxygen deprivation itself inhibits [3H]-5-HT release in rat hippocampal slices during oxygen-deprived period, but additional glucose deprivation convert the inhibitory response to increase of [3H]-5-HT release.

  • PDF

유기물질이 인제거 특성에 미치는 영향 (Substrate Effects on Biological Excess Phosphorus Removal)

  • 전항배;이응택;신항식
    • 상하수도학회지
    • /
    • 제8권2호
    • /
    • pp.25-34
    • /
    • 1994
  • In this research, investigations were made on the effect of type and load of organic substrate on phosphorus release. Reactors of three different sizes were operated, being fed on five kinds of organic substrates. The quantitative analyses were made on phosphorus release and substrate utilization under anaerobic condition. The molar ratios of the uptaken organic substrate to the released phosphorus were 0.5 with acetate, 0.6 with glucose, 0.8 with glucose/acetate, and 1.2 with glucose/acids, respectively. The phosphorus release was inhibited at the higher organic load than the normal at stead state. Both acetate and acids/glucose enhanced phosphorus release- as well as uptake-rate, however, the complete phosphorus removal was achieved after the microbial adaptation to the new environment. In case with acetate, operation was hampered by the poor sludge settleability and phosphorus uptake was not enough although the phosphorus release was active. But with milk/starch, the phosphorus release and uptake was well developed even though phosphorus release was not comparatively high. From this study, it was concluded that organic substrates, such as glucose seemed to be converted fatty acids after fast bio-sorption, followed by concurrent uptake of these acids by excess phosphorus removing bacteria.

  • PDF

인삼성분 D-O-ANa이 인슐린 분비에 미치는 영향 및 작용기전에 관한연구 (FURTHER PURIFIED GINSENG EXTRACT FRACTION (D-O-ANA) FOR INSULIN RELEASE AND ITS MODE OF ACTION COMPARED WITH THE ISOLATED RESIDUAL COMPONENTS)

  • KIMURA Masayasu;SUZUKI Jun;WAKI Isami;KIMURA Ikuko;TANAKA Osamu;MATSU-URA Hiromichi
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1984년도 학술대회지
    • /
    • pp.191-197
    • /
    • 1984
  • 인삼의 저혈당성 분획 (DPG-3-2)이 적출한 랑겔한스섬에서 인슐린 분비를 증가시킨다고 일전에 본 저자들이 발표하였다. 근래에 이와 같은 DPG-3-2 분획으로부터 사포닌, 뉴크레오사이드, 뉴크레오타이드, 아미노산, 당 등을 완전히 제거시켜 더욱 정제한 D-O-ANa 성분을 추출하였다. D-O-ANa 유발성 인슐린 분비효과를 DPG 3-2 분획과 그외 잔여성분과 비교 검토하였다. D-O-ANa는 글루코우즈 농도의 고저에 무관하게 인슐린 분비를 가장 강하게 촉진하였다. 특히 D-O-ANa는 제 2 차증 글루코운즈 유발성 인슐린 분비를 촉진하였다. DPG 3-2 분획은 당뇨병 쥐로부터 떼어낸 랑겔한스섬에서 세포외 체액의 칼슘이온이 증가됨에 따라($0.16{\~}6.25$mM) 글루코우즈 유발성 인슐린 분비를 더욱 현저히 증가시켰다. 칼슘이온 흡수와 인슐린분비의 상호관계가 뚜렷이 밝혀졌다. 이 관계는 single sucrose gap 방법에 의해 주의 적출 간 문맥에서 칼슘주파수가 증가되는 실험을 통해 증명되었다.

  • PDF

Glucose/Oxygen Deprivation Induces Release of $[^3H]5-hydroxytryptamine$ Associated with Synapsin 1 Expression in Rat Hippocampal Slices

  • Park, Eun-Mi;Chu, Sang-Hui;Lee, Kyung-Eun
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제4권5호
    • /
    • pp.347-353
    • /
    • 2000
  • It has been well documented that a massive release of not only glutamate but also other neurotransmitters may modulate the final responses of nerve cells to the ischemic neuronal injury. But there is no information regarding whether the release of monoamines is directly associated with synaptic vesicular proteins under ischemia. In the present study, it was investigated whether synapsin 1, syntaxin and SNAP-25 are involved in the release of 5-hydroxytryptamine $([^3H]5-HT)$ in glucose/oxygen deprived (GOD) rat hippocampal slices. And, the effect of NMDA receptor using DL-2-amino-5-phosphonovaleric acid (APV) on ischemia- induced release of 5-HT and the changes of the above proteins were also investigated. GOD for 20 minutes enhanced release of $[^3H]5-HT,$ which was in part blocked by the NMDA receptor antagonist, APV. The augmented expression of synapsin 1 during GOD for 20 minutes, which was also in part prevented by APV. In contrast, the expression of syntaxin and SNAP-25 were not altered during GOD. These results suggest that ischemic insult induces release of $[^3H]5-HT$ associated with synapsin 1, synaptic vesicular protein, via activation of NMDA receptor in part.

  • PDF

흰쥐 해마절편에서 포도당/산소 고갈에 의한 5-hydroxytryptamine 유리변동에 미치는 Adenosine의 영향 (Effect of Adenosine on the Release of $[^3H]-5-hydroxytryptamine$ during Glucose/Oxygen Deprivation from Rat Hippocampal Slices)

  • 차광은;배영숙;이경은
    • The Korean Journal of Physiology and Pharmacology
    • /
    • 제1권6호
    • /
    • pp.657-664
    • /
    • 1997
  • The effects of adenosine, adenosine A1 receptor antagonist (DPCPX), or NMDA receptor antagonist (APV) on the spontaneous release of $[^3H]-5-hydroxytryptamine$ ($[^3H]-5-HT$) during normoxic/normoglycemic or hypoxic/hypoglycemic period were studied in the rat hippocampal slices. The hippocampus was obtained from the rat brain and sliced $400\;{\mu}m$ thickness with the tissue slicer. After 30 min's preincubation in the normal buffer, the slices were incubated for 30 min in a buffer containing $[^3H]-5-HT$ ($0.1\;{\mu}M,\;74{\mu}Ci/8\;ml$) for uptake, and washed. To measure the release of $[^3H]-5-HT$ into the buffer, the incubation medium was drained off and refilled every ten minutes through sequence of 14 tubes. Induction of glucose/oxygen deprivation (GOD; medium depleting glucose and gassed with 95% $N_2/5%\;CO_2$) was done in 6th and 7th tube. The radioactivities in each buffer and the tissue were counted using liquid scintillation counter and the results were expressed as a percentage of the total radioactivities. When slices were exposed to GOD for 20 mins, the spontaneous release of $[^3H]-5-HT$ was markedly increased and this increase of $[^3H]-5-HT$ release was blocked by adenosine ($10\;{\mu}M$) or DL-2-amino-5-phosphonovaleric acid (APV; $30\;{\mu}M$). Adenosine $A_1$ receptor specific antagonist, 8-cyclopentyl-1,3-dipropylxanthine (DPCPX) exacerbate GOD-induced increase of spontaneous release of $[^3H]-5-HT$. These results suggest that Adenosine may play a role in the GOD-induced spontaneous release of $[^3H]-5-HT$ through adenosine $A_1$ receptor activity.

  • PDF

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • 제8권2호
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Effect of Glucose, Its Analogs and Some Amino Acids on Pre-steady State Kinetics of ATP Hydrolysis by PM-ATPase of Pathogenic Yeast (Candida albicans)

  • Bushra, Rashid;Nikhat, Manzoor;M., Amin;Luqman A., Khan
    • Animal cells and systems
    • /
    • 제8권4호
    • /
    • pp.307-312
    • /
    • 2004
  • Fast kinetics of transient pH changes and difference spectrum formation have been investigated following mixing of ADP/ATP with partially purified plasma membrane PM-ATPase of the pathogenic yeast Candida albicans in the presence of five nutrients: glucose, glutamic acid, proline, lysine, and arginine and two analogs of glucose: 2-deoxy D-glucose and xylose. Average $H^+$- absorption to release ratio, indicative of population of ATPase undergoing complete hydrolytic cycle, was found to be 0.27 for control. This ratio varied between 0.25 (proline) to 0.36 (arginine) for all other compounds tested, except for glucose. In the presence of glucose, $H^+$- absorption to release ratio was exceptionally high (0.92). While no UV difference spectrum was observed with ADP, mixing of ATP with ATPase led to a large conformational change. Exposure to different nutrients restricted the magnitude of the conformational change; the analogs of glucose were found to be ineffective. This suppression was maximal in the case of glucose (80%); with other nutrients, the magnitude of suppression ranged from 40-50%. Rate of $H^+$- absorption, which is indicative of E~P complex dissociation, showed positive correlation with suppression of conformational change only in the case of glucose and no other nutrient/analog. Mode of interaction of glucose with plasma membrane $H^+$-ATPase thus appears to be strikingly distinct compared to that of other nutrients/analogs tested. The results obtained lead us to propose a model for explaining glucose stimulation of plasma membrane $H^+$-ATPase activity.

위선세포의 항산화 방어기전으로의 Nitric Oxide의 역할 (Role of Nitric Oxide as an Antioxidant in the Defense of Gastric Cells)

  • 김혜영;이은주;김경환
    • 대한약리학회지
    • /
    • 제32권3호
    • /
    • pp.389-397
    • /
    • 1996
  • 위점막은 위강내에서 생성되는 독성이 강한 활성산소종에 노출된다. Nitric oxide는 glutathione의 항상성을 유지시킴으로써 acetaminophen 유도 간독성에 대한 보호효과를 나타내었다. 본 연구는 hydrogen peroxide로 인한 위선세포 손상에 대한 nitric oxide의 작용을 규명하고자 하였다. Hydrogen peroxide는 ${\beta}-D-glucose$와 glucose oxidase의 반응에 의해 생성시켰으며, 위선세포에 L-arginine, $N^{G}-nitro-L-arginine$ methyl ester 및 $N^G-nitro-L-arginine$을 전처리 한 후, 세포외로 유리되는 지질과산화물 및 nitrite를 정량하고 세포내 glutathione 함량을 측정하였다. 결과로서, glucose/glucose oxidase를 처리한 경우 glucose oxidase 농도의존적으로 지질과산화물 생성은 증가되었으며, nitrite 유리 및 glutathione 함량은 감소되었다. NO synthase의 기질인 L-arginine 전처리시 glucose/glucose oxidase에 의한 지질과산화 및 nitrite 유리 증가와 세포내 glutathione 감소등이 방지되었다. $N^G-nitro-L-arginine$ methyl ester 및 $N^G-nitro-L-arginine$등 NO synthase 억제제들은 세포손상에 보호효과를 나타내지 않았다. 결론적으로 nitric oxide는 hydrogen peroxide로 인한 세포손상에 대한 보호효과가 없으며, 이는 지질과산화 반응 및 세포내 glutathione 고갈등을 억제시킴으로써 이루어진다고 사료된다.

  • PDF