• Title/Summary/Keyword: glucose production

Search Result 2,371, Processing Time 0.029 seconds

Physiological importance of trypsin-like protease during morphological differentiation of streptomycetes

  • Kim, In-Seop;Kang, Sung-Gyun;Lee, Kye-Joon
    • Journal of Microbiology
    • /
    • v.33 no.4
    • /
    • pp.315-321
    • /
    • 1995
  • The relationship between morphological differentiation and production of trypsin-like protease (TLP_ in streptomycetes was studied. All the Streptomyces spp.In this study produced TLP just before the onset of aerial mycelium formation. Addition of TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP inhibitor, TLCK, to the top surface of colonies inhibited aerial mycelium formation as well as TLP activity. Addition of 2% glucose to the Bennett agar medium repressed both the aerial mycelium formation and TLP production in S. abuvaviensis, S. coelicolor A3(2), S exfoliatus, S. microflavus, S. roseus, s. lavendulae, and S. rochei. However the addition of glucose did not affect S. limosus, S. felleus, S. griseus, S. phaechromogenes, and S. rimosus. The glucose repression on aerial mycelium formation and production of TLP was relieved by the addition of glucose anti-metabolite (methyl .alpha.-glucopyranoside). Therefore, it was concluded that TLP production is coordinately regulated with morphological differentiation and TLP activity is essential for morphological differentiation in streptomycetes. The proposed role of TLP is that TLP participates in the degradation of substrate mycelium protein for providing nutrient for aerial mycelial growth.

  • PDF

Immunostimulation of C6 Glioma Cells Induces Nitric Oxide-Dependent Cell Death in Serum-Free, Glucose-Deprived Condition

  • Shin, Chan-Young;Choi, Ji-Woong;Ryu, Jae-Ryun;Ryu, Jong-Hoon;Kim, Won-Ki;Kim, Hyong-Chun;Ko, Kwang-Ho
    • Biomolecules & Therapeutics
    • /
    • v.8 no.2
    • /
    • pp.140-146
    • /
    • 2000
  • Recently, we reported that immunostimulation of primary rat cortical astrocyte caused stimulation of glucose deprivation induced apoptotic cell death. To enhance the understanding of the mechanism of the potentiated cell death of clucose-deprived astrocyte by immunostimulation, we investigated the effect of immunostimulation on the glucose deprivation induced cell death of rat C6 glioma cells. Co-treatment of C6 glioma cells with lipopolysaccharide (LPS, $1\;{\mu}\textrm{g}/ml$) and interferon ${\gamma}(IFN{\gamma},\;100U/ml)$ is serum free condition caused marked elevationo f nitric oxide production ($>50\;{\mu}M$). In this condition, glucose deprivation caused significant release of lactate dehdrogenase (LDH) from C6 glioma cells while control cells did not show LDH release. To investigate whether elevated level of nitric oxide is responsible for the enhanced LDH release in glucose-deprived condition, C6 glioma cells were treated with 3-morphorinosydnonimine (SIN-1) and it was observed that SIN-1 caused increase in LDH release from glucose-deprived C6 glioma cells. Treatment of C6 glioma cells with $25\;{\mu}M$ of pyrrolidinedithiocarbamate (PDTC) which inhibit Nuclear factor kB (NF-kB) activation, caused complete inhibition of nitric oxide production. Treatment of C6 glioma cells with NO synthase inhibitors, $N^{G}$-nitro-L-arginine (NNA) or L-$N{\omega}$-nitro-L-arginine methyl ester (L-NAME), caused inhibition of nitric oxide production and also glucose deprivation induced cell death of cytokine-stimulated C6 glioma cells. In addition, diaminohydroxypyrimidine (DAHP, 5 mM) which inhibits the synthesis of tetrahydrobiopterine (BH4), one of essential cofactors for iNOS activity, caused complete inhibition of NO production from immunostimulated C6 glioma cells. The results from the present study suggest that immunostimulation causes potentiation of glucose deprivation induced death of C6 glioma cells which is mediated at least in part by the increased production of nitric oxide. The vulnerability of immunostimulated C6 glioma cells to hypoglycemic insults may implicate that the elevated level of cytokines in various ischemic and neurodegenerative diseases may play a role in their pathogenesis.

  • PDF

Studies on the Fermentative Production of Inosine 5'-monophosphate by Microorganisms. (Part II) Effects of Carbon Source and Purine Base on Inosine 5'-monophosphate Accumulation by a Mutant of Brevibacterium ammoniagenes (미생물에 의한 5'-이노신산의 생산에 관한 연구 (제 2보) Brevibacterium ammoniagenes 이변주에 의한 5'-이노신산의 생성에 미치는 탄소원과 Purine염기의 영향)

  • ;;;;Hiroshi Iizuka
    • Microbiology and Biotechnology Letters
    • /
    • v.9 no.1
    • /
    • pp.45-50
    • /
    • 1981
  • The effect of growth and the carbon sources including the molar ratio of fructose to glucose was studied for the maximization of inosine-5'-monophosphate (5'-IMP) production from Brebibacterium ammoniagenes D-21530. According to experimental results, fructose was more efficient to 5'-IMP accumulation than glucose, while the latter was better for the cell growth than the former. To synchronously use glucose and fructose as carbon source is to optimally control the cell growth and maximum production of 5'-IMP without change of other conditions. The optimal weight percent of fructose to sum of glucose and fructose was 20~40%, and the productivity improvement over the utilization of fructose was about 40%. And also the optimality of purine base such as adenine and guanine were considered. The optimal concentrations of adenine and guanine were near 50㎎/l.

  • PDF

Effects of Concentrations of Glucose and Maltose on the Growth of Bacillus amyloliquefaciens (B. amyloliquefaciens 세포 성장에 미치는 포도당과 맥아당 농도의 영향에 관한 연구)

  • 차월석;박승규김종수
    • KSBB Journal
    • /
    • v.9 no.4
    • /
    • pp.428-435
    • /
    • 1994
  • Cell growth and production of ${\alpha}$-amylase, acetic acid and lactic acid were investigated in Bacillus amyloliquefaciens(ATCC 23350) flask culture with various carbon sources. Maximum dry cell density increased with increase in initial maltose concentration. Maximum dry cell density was the highest(1.4g/$\ell$) at 10g/$\ell$ of initial glucose concentration. With 10g/$\ell$ of initial glucose concentration, maximum specific cell growth rate was obtained. Among the various carbon sources maximum ${\alpha}$-amylase production was obtained with 149 unit/ml at 20g/$\ell$ of initial maltose concentration. With 5g/$\ell$ of initial maltose concentration, maximum ${\alpha}$-amylase production rate was obtained. By increasing carbon source concentration, acetic acid formation decreased. Acetic acid formation was higher in glucose than in maltose. By increasing carbon source concentration, lactic acid formation increased. Lactic acid formation was higher in maltose than in glucose.

  • PDF

Isolation and Characterization of Regulatory Mutant for Cellulase Production from Trichoderma reesei QM 9414 (Trichoderma reesei QM 9414의 섬유소 분해 호소 생산을 위한 조절변이주의 분리 및 특성에 관한 연구)

  • Choi, Kun-Ho;Koo, Youn-Mo;So, Jae-Seong
    • The Korean Journal of Mycology
    • /
    • v.26 no.1 s.84
    • /
    • pp.127-133
    • /
    • 1998
  • Two regulatory mutants of Trichoderma reesei QM 9414 were isolated by treatment with N-methyl-N'-nitro-N-nitrosoguanidine, and the effects of various inducers on the carboxymethyIcellulose (CMC) and filter paper (FP) production were investigated. Induction of CMCase and FPase production of mutants was shown higher level than wild type strain in 1% lactose minimal broth. When induced by glucose, wild type showed glucose-repression for CMCase and FPase production and mutants showed glucose-derepression. Mutant 1 showed 8.38 fold higher CMCase activity and 5.68 fold higher FPase activity than wild type stain. Mutant 2 showed about 8.42 fold higher CMCase activity and 5.41 fold higher FPase activity than wild type strain. Enzyme activities from the mutants and wild type had the same optimum pH of 4.8 and optimum temperature of $60^{\circ}C$.

  • PDF

Effect of Conjugated Linoleic Acid on Nuclear Factor-${\kappa}B$ Activation and Tumor Necrosis Factor-${\alpha}$ Production in RAW 264.7 Cells Exposed to High Concentration of Glucose (고농도의 당에 노출된 RAW 264.7 세포에서 conjugated linoleic acid의 TNF-${\alpha}$ 생산과 NF-${\kappa}B$의 활성 효과)

  • Lee, Minji;Kang, Byeong-Teck;Kang, Ji-Houn;Yang, Mhan-Pyo
    • Journal of Veterinary Clinics
    • /
    • v.29 no.5
    • /
    • pp.361-367
    • /
    • 2012
  • Diabetes-related complications in human and veterinary medicine have been shown to be associated with hyperglycemia-induced inflammation. It has been recently suggested that the onset of insulin resistance may be caused by over-production of inflammatory cytokines such as tumor necrosis factor (TNF)-${\alpha}$ from immune cells. Conjugated linoleic acid (CLA) regulates inflammatory response through modulation of TNF-${\alpha}$ expression. The objective of this study was to examine the effect of CLA on nuclear factor kappaB (NF-${\kappa}B$) p65 binding activity, inhibitory kappaB ($I{\kappa}B$)-${\alpha}$ expression, and TNF-${\alpha}$ production from high glucose-treated RAW 264.7 cells. CLA was added to RAW cells that had been previously cultured with low or high concentration of glucose. The levels of TNF-${\alpha}$ protein in the culture supernatant of RAW cells exposed to high concentrations of glucose were higher than those of cells exposed to low concentrations of glucose. The treatment with the high concentration of glucose in RAW cells increased levels of NF-${\kappa}B$ p65 binding activity and the decreased $I{\kappa}B-{\alpha}$ expression when compared with those of low glucose. The treatments in combination with CLA and glucose (low and high) glucose in RAW cells increased TNF-${\alpha}$ production when compared with that glucose alone. These treatments with CLA increased TNF-${\alpha}$ production in high glucose-treated RAW cells than those with low glucose. These treatments of CLA also showed higher NF-${\kappa}B$ p65 binding activity and lower $I{\kappa}B-{\alpha}$ expression in high glucose than those in low glucose condition. This suggests that CLA can increase NF-${\kappa}B$ p65 binding activity and TNF-${\alpha}$ production from high glucose-treated RAW 264.7 cells and is likely to promote hyperglycemia-induced inflammation.

Selection of organic Nitrogen Source and Optimization of Culture Conditions for the Production of Arachidonic Acid from Mortierella alpina (Mortierella alpina를 이용한 아라키돈산의 생산에서 유기질소원의 선정과 배양 조건의 최적화)

  • 유연우;하석진;박장서
    • KSBB Journal
    • /
    • v.19 no.1
    • /
    • pp.78-82
    • /
    • 2004
  • Experiments were carried out to select an organic nitrogen source and optimize the culture conditions for the production of arachidonic acid by Mortierella alpina DSA-12. Corn steep powder(CSP) was selected as an organic nitrogen source based on arachidonic acid production and raw material price. The optimum C/N ratio was in the range of 15 to 17 with the medium containing glucose as carbon source and CSP as nitrogen source. The optimum culture conditions for arachidonic acid production showed 500 rpm agitation and 25$^{\circ}C$ culture temperature at 0.5 vvm aeration. Under the optimum conditions, the concentration of cell, total lipid and arachidonic acid were 21.8 g/L, 10.2 g/L and 3.70 g/L, respectively, from 50 g/L glucose and 18 g/L CSP. In the 500 L fermenter with 0.5 vvm aeration and 200 rpm agitation, the concentration of cell, total lipid and arachidonic acid were 19.8 g/L, 9.1 g/L and 3.67 g/L, respectively, from 50 g/L glucose and 18 g/L CSP. This result showed that an arachidonic acid production could be possible with a bench-scale fermenter using corn steep powder as a nitrogen source.

Continuous Ethanol Production Using immobilized Baker's Yeast (고정화 효모를 이용한 연속적 에탄올 생산)

  • 한면수;하상도;정동효
    • Microbiology and Biotechnology Letters
    • /
    • v.19 no.4
    • /
    • pp.398-404
    • /
    • 1991
  • - Ethanol production by calcium alginate-immobilized baker's yeast was studied in the continuous shaked-flask reactor (CSFR) using glucose medium as a feed. Immobilized cells were stable at 30~$37^{\circ}C$ and pH 4~8. Fermentation characteristics of immobilized baker's yeast were examined changing the initial glucose concentration employed were 50, 100 and 150 g/l, respectively. It was investigated that the influent glucose concentration and the dilution rate have an influence on the ethanol fermentation characteristics at steady state in continuous culture of immobilized baker's yeast. The optimum conditions for high ethanol productivity and low residual glucose output in ethanol prodution were shown to be 0.2 h ' for the dilution rate and 150 g/l for the influent glucose concentration. The maximum ethanol productivity, ethanol yield, specific growth rate and glucose conversion rate were around 7.12 g/$l\cdot h$, 0.23, 0.366 g/$l\cdot h$ and 78.43, respectively.

  • PDF

Production of DagA, a ${\beta}$-Agarase, by Streptomyces lividans in Glucose Medium or Mixed-Sugar Medium Simulating Microalgae Hydrolysate

  • Park, Juyi;Hong, Soon-Kwang;Chang, Yong Keun
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.12
    • /
    • pp.1622-1628
    • /
    • 2014
  • DagA, a ${\beta}$-agarase, was produced by cultivating a recombinant Streptomyces lividans in a glucose medium or a mixed-sugar medium simulating microalgae hydrolysate. The optimum composition of the glucose medium was identified as 25 g/l glucose, 10 g/l yeast extract, and $5g/l\;MgCl_2{\cdot}6H_2O$. With this, a DagA activity of 7.26 U/ml could be obtained. When a mixed-sugar medium containing 25 g/l of sugars was used, a DagA activity of 4.81 U/ml was obtained with very low substrate utilization efficiency owing to the catabolic repression of glucose against the other sugars. When glucose and galactose were removed from the medium, an unexpectedly high DagA activity of about 8.7 U/ml was obtained, even though a smaller amount of sugars was used. It is recommended for better substrate utilization and process economics that glucose and galactose be eliminated from the medium, by being consumed by some other useful applications, before the production of DagA.