• Title/Summary/Keyword: glucose oxidase(GO)

Search Result 43, Processing Time 0.021 seconds

Effects on Mammalian Tissues and Cells by Sulfur Containing Compounds (황함유 화합물이 동물의 조직과 세포에 미치는 영향)

  • 이기섭;이정채;나상록;정희영;임계택
    • Toxicological Research
    • /
    • v.15 no.1
    • /
    • pp.79-87
    • /
    • 1999
  • To know the stress response and antioxidative effect of sulfur containing compounds, we observed the expression of the stress protein (heat shock protein; inducible protein) from mouse tissues and evaluated the protective effects to hydroxyl radical in mouse brain cell culture. Cysteine, methionine or sodium sulfide was fed by oral administration of 1 ml/per 6hr/three times with 1 mM, 2mM or 3mM to mouse, respectively. After that, the stress proteins were extracted from mouse tissues and analyzed the features of expression. The stress proteins by sulfur containing compounds were showed different aspects in the kinds and concentrations of their compounds, and in the tissues of mouse. In the liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in liver, the stress proteins were appeared at different time on the concentration of sulfur containing compounds and had less than 20 KDa as small molecules. In general, the molecular weights of stress protein in the spleen were evaluated from 32KDa to 50KDA, and the induced times were relatively late at high concentration of cysteine, early at low concentration of methionine or sodium sulfide. The stress proteins in mouse muscle were detected mostly between 24hr after treatment of sulfur containing compounds. Their molecular weights were 15~24KDa. In the antioxidative effects of sulfur containing compounds to hydroxyl radical, cell viabilities were measured by 63.2% at 10 $\mu\textrm{M}$, 65.5% at 50 $\mu\textrm{M}$, 68.6% at 100 $\mu\textrm{M}$, 78.3% at 150 $\mu\textrm{M}$, or 83.0% at 200 $\mu\textrm{M}$ of cysteine, respectively. At addition of methionine, the cell viabilities were assessed as 58.1% at 10 $\mu\textrm{M}$, 62.8% at 50 $\mu\textrm{M}$, 75.7% at 100 $\mu\textrm{M}$, 78.6% at 150 $\mu\textrm{M}$, and 79.2% at 200 $\mu\textrm{M}$ after 4hrs exposure with 20mU/ml glucose oxidase (GO) system, while the numbers of live cells to hydroxyl radicals in treatment of sodium sulfide were showed 48.6% at 10 $\mu\textrm{M}$, 54.8% at 100 $\mu\textrm{M}$, 51.8% at 150 $\mu\textrm{M}$, and 51.6% at 200 $\mu\textrm{M}$ in the neuronal cells. In the inhibitory effects on the proliferation of tumor cells, percentages of dead cells of the CT-26 or HeLa cell were generally less than 30% even 48hr after addition of sulfur containing compounds. Conclusively, the results of these experiments indicate that stress protein by sulfur containing compounds can be used as physiological indicator for animal nutrition and for environment, and also that cysteine and methionine can play critical roles as an antioxidant.

  • PDF

Bioactive Utility of the Extracts from Rhus verniciflua Stokes (RVS) : Biological Function of the Extracts from RVS (옻나무 추출물의 생리활성 이용에 대한 연구 : 옻나무 추출물의 생물학적 기능)

  • Lim, Kye-Taek;Lee, Jeong-Chae
    • Korean Journal of Food Science and Technology
    • /
    • v.31 no.1
    • /
    • pp.238-245
    • /
    • 1999
  • Antioxidative effects of the water or ethanol extracts from Rhus verniciflua Stokes (RVS) were measured by protection against hydroxyl radicals in mouse brain tissue culture. In the water extracts from RVS, cell viabilities were estimated 60.0, 66.0, 72.0, 84.0 and 90.0% at addition of 1, 2, 4, 7 and $10{\mu}L$, respectively, compared with GO (20 mU/mL) alone. The cell viability in the ethanol extracts was similarly with water extracts. In the antitumor effects, the results showed that percentages of the HeLa cell death were approximately 24% for 12 hrs, 57% for 48 hrs at addition of 10%/well ethanol extracts respectively. To know inhibition of tumor growth, in vivo, mice (BALB/c) were inoculated with 0.25 mL CT-26 $(1{\times}10^6\;cells/mL)$ subcutaneously. After the generation of tumor, the results of RVS extracts (ethanol, water) injection showed generally that the tumor size in BALB/c was reduced. For physicochemical characterization of the RVS extracts, purified substances of water or ethanol extracts were analized with SDS-PAGE and ICP spectrometer. In electrophoresis, gel showed 2 bands (210, 230 KDa). The results of ICP verified that RVS extracts contain $Cu^{2+}$ in both samples. Conclusively, this substance might be a laccase which has a biological effective function, as a natural bioactive substance.

  • PDF

Optimization for the Process of Ethanol of Persimmon Leaf(Diospyros kaki L. folium) using Response Surface Methodology (반응표면분석법을 이용한 감잎(Diospyros kaki L. folium) 에탄올 추출물의 최적화)

  • Bae, Du-Kyung;Choi, Hee-Jin;Son, Jun-Ho;Park, Mu-Hee;Bae, Jong-Ho;An, Bong-Jeon;Bae, Man-Jong;Choi, Cheong
    • Applied Biological Chemistry
    • /
    • v.43 no.3
    • /
    • pp.218-224
    • /
    • 2000
  • The efforts were made to optimite ethanol extraction from persimmon leaf with the time of extraction$(1.5{\sim}2.5\;hrs)$, the temperature of extraction$(70{\sim}90^{\circ}C)$, and the concentration of ethanol$(0{\sim}40%)$ as three primary variables together with several functional characteristics of persimmon leaf as reaction variables. The conditions of extraction was best fitted by using response surface methodology through the center synthesis plan, and the optimal conditions of extraction were established. The contents of soluble solid and soluble tannin went up as the concentration of ethanol went up and the temperature of extraction went down, and the turbidity went down as the concentration of ethanol went down. Electron donation ability was hardly affected by the extraction temperature and had the tendency to go up as the concentration of ethanol went up. The inhibitory activity of xanthine oxidase(XOase) had the tendency to go up as both the concentration of ethanol and the temperature of extraction went up. The inhibitory activity of angiotensin converting enzyme(ACE), the significance of which still was not recognized, showed the maximum when the concentration of ethanol was 27%. In result, the optimal conditions of extraction was the extraction time of two hours, the extraction temperature of $75{\sim}81^{\circ}C$, and the ethanol concentration of $33{\sim}35%$.

  • PDF