• Title/Summary/Keyword: glucose dehydrogenase gene

Search Result 50, Processing Time 0.035 seconds

Enzymatic Characterization of Salmonella typhimurium Mannitol Dehydrogenase Expressed in Escherichia coli (Salmonella typhimurium에서 유래한 Mannitol Dehydrogenase 유전자의 대장균 내 발현 및 효소특성 규명)

  • Jang, Myoung-Uoon;Park, Jung-Mi;Kim, Min-Jeong;Kang, Jung-Hyun;Lee, So-Won;Kim, Tae-Jip
    • Korean Journal of Microbiology
    • /
    • v.48 no.2
    • /
    • pp.156-162
    • /
    • 2012
  • A mannitol dehydrogenase (StMDH) gene was cloned from Salmonella typhimurium LT2 (KCTC 2421) and overexpressed in Escherichia coli. It has a 1,467 bp open reading frame encoding 488 amino acids with deduced molecular mass of 54 kDa, which shares approximately 36% of amino acid identity with known long-chain dehydrogenase/reductatse (LDR) family enzymes. The recombinant StMDH showed the highest activity at $30^{\circ}C$, and pH 5.0 and 10.0 for D-fructose reduction and D-mannitol oxidation, respectively. On the contrary, it has no activity on glucose, galactose, xylose, and arabinose. StMDH can catalyze the oxidative/reductive reactions between D-fructose and D-mannitol only in the presence of $NAD^+$/NADH as coenzymes. These results indicate that StMDH is a typical $NAD^+$/NADH-dependent mannitol dehydrogenase (E.C. 1.1.1.67).

Identification and Characterization of Protein Encoded by orf382 as $\small{L}$-Threonine Dehydrogenase

  • Ma, Fei;Wang, Tianwen;Ma, Xingyuan;Wang, Ping
    • Journal of Microbiology and Biotechnology
    • /
    • v.24 no.6
    • /
    • pp.748-755
    • /
    • 2014
  • In the genome annotation of Escherichia coli MG1655, the orf382 (1,149 bp) is designated as a gene encoding an alcohol dehydrogenase that may be Fe-dependent. In this study, the gene was amplified from the genome by PCR and overexpressed in Escherichia coli BL21(DE3). The recombinant $6{\times}$His-tag protein was then purified and characterized. In an enzymatic assay using different hydroxyl-containing substrates (n-butanol, $\small{L}$-threonine, ethanol, isopropanol, glucose, glycerol, $\small{L}$-serine, lactic acid, citric acid, methanol, or $\small{D}$-threonine), the enzyme showed the highest activity on $\small{L}$-threonine. Characterization of the mutant constructed using gene knockout of the orf382 also implied the function of the enzyme in the metabolism of $\small{L}$-threonine into glycine. Considering the presence of tested substrates in living E. coli cel ls and previous literature, we believed that the suitable nomenclature for the enzyme should be an $\small{L}$-threonine dehydrogenase (LTDH). When using $\small{L}$-threonine as the substrate, the enzyme exhibited the best catalytic performance at $39^{\circ}C$ and pH 9.8 with $NAD^+$ as the cofactor. The determination of the Km values towards $\small{L}$-threonine (Km = $11.29{\mu}M$), ethanol ($222.5{\mu}M$), and n-butanol ($8.02{\mu}M$) also confirmed the enzyme as an LTDH. Furthermore, the LTDH was shown to be an ion-containing protein based on inductively coupled plasma-atomic emission spectrometry with an isoelectronic point of pH 5.4. Moreover, a circular dichroism analysis revealed that the metal ion was structurally and enzymatically essential, as its deprivation remarkably changed the ${\alpha}$-helix percentage (from 12.6% to 6.3%).

Effects of N-/C-Terminal Extra Tags on the Optimal Reaction Conditions, Activity, and Quaternary Structure of Bacillus thuringiensis Glucose 1-Dehydrogenase

  • Hyun, Jeongwoo;Abigail, Maria;Choo, Jin Woo;Ryu, Jin;Kim, Hyung Kwoun
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.10
    • /
    • pp.1708-1716
    • /
    • 2016
  • Glucose dehydrogenase (GDH) is an oxidoreductase enzyme and is used as a biocatalyst to regenerate NAD(P)H in reductase-mediated chiral synthesis reactions. In this study, the glucose 1-dehydrogenase B gene (gdhB) was cloned from Bacillus thuringiensis subsp. kurstaki, and wild-type (GDH-BTWT) and His-tagged (GDH-BTN-His, GDH-BTC-His) enzymes were produced in Escherichia coli BL21 (DE3). All enzymes were produced in the soluble forms from E. coli. GDH-BTWT and GDH-BTN-His showed high specific enzymatic activities of 6.6 U/mg and 5.5 U/mg, respectively, whereas GDH-BTC-His showed a very low specific enzymatic activity of 0.020 U/mg. These results suggest that the intact C-terminal carboxyl group is important for GDH-BT activity. GDH-BTWT was stable up to 65℃, whereas GDH-BTN-His and GDH-BTC-His were stable up to 45℃. Gel permeation chromatography showed that GDH-BTWT is a dimer, whereas GDH-BTN-His and GDH-BTC-His are monomeric. These results suggest that the intact N- and C-termini are required for GDH-BT to maintain thermostability and to form its dimer structure. The homology model of the GDH-BTWT single subunit was constructed based on the crystal structure of Bacillus megaterium GDH (PDB ID 3AY6), showing that GDH-BTWT has a Rossmann fold structure with its N- and C-termini located on the subunit surface, which suggests that His-tagging affected the native dimer structure. GDH-BTWT and GDH-BTN-His regenerated NADPH in a yeast reductase-mediated chiral synthesis reaction, suggesting that these enzymes can be used as catalysts in fine-chemical and pharmaceutical industries.

Virulence genes of Streptococcus mutans and dental caries

  • You, Yong-Ouk
    • International Journal of Oral Biology
    • /
    • v.44 no.2
    • /
    • pp.31-36
    • /
    • 2019
  • Streptococcus mutans is one of the important bacteria that forms dental biofilm and cause dental caries. Virulence genes in S. mutans can be classified into the genes involved in bacterial adhesion, extracellular polysaccharide formation, biofilm formation, sugar uptake and metabolism, acid tolerance, and regulation. The genes involved in bacterial adhesion are gbps (gbpA, gbpB, and gbpC) and spaP. The gbp genes encode glucan-binding protein (GBP) A, GBP B, and GBP C. The spaP gene encodes cell surface antigen, SpaP. The genes involved in extracellular polysaccharide formation are gtfs (gtfB, gtfC, and gtfD) and ftf, which encode glycosyltransferase (GTF) B, GTF C, and GTF D and fructosyltransferase, respectively. The genes involved in biofilm formation are smu630, relA, and comDE. The smu630 gene is important for biofilm formation. The relA and comDE genes contribute to quorumsensing and biofilm formation. The genes involved in sugar uptake and metabolism are eno, ldh, and relA. The eno gene encodes bacterial enolase, which catalyzes the formation of phosphoenolpyruvate. The ldh gene encodes lactic acid dehydrogenase. The relA gene contributes to the regulation of the glucose phosphotransferase system. The genes related to acid tolerance are atpD, aguD, brpA, and relA. The atpD gene encodes $F_1F_0$-ATPase, a proton pump that discharges $H^+$ from within the bacterium to the outside. The aguD gene encodes agmatine deiminase system and produces alkali to overcome acid stress. The genes involved in regulation are vicR, brpA, and relA.

Molecular Cloning and Characterization of myo-Inositol Dehydrogenase from Enterobacter sp. YB-46 (Enterobacter sp. YB-46의 myo-Inositol dehydrogenase 유전자 클로닝과 특성분석)

  • Park, Chan Young;Kim, Kwang-Kyu;Yoon, Ki-Hong
    • Microbiology and Biotechnology Letters
    • /
    • v.46 no.2
    • /
    • pp.102-110
    • /
    • 2018
  • A bacterial strain capable of metabolizing myo-inositol (MI) and converting to other substances was isolated from soil of orchard. The isolate, named YB-46, was grown on minimal medium supplemented with MI as the sole carbon source and was presumed to belonging to genus Enterobacter according to the 16S rDNA sequence. Escherichia coli transformant converting MI into unknown metabolites was selected from a metagenomic library prepared with fosmid pCC1FOS vector. Plasmid was isolated from the transformant, and the inserted gene was partially sequenced. From the nucleotide sequence, an iolG gene was identified to encode myo-inositol dehydrogenase (IolG) consisting of 336 amino residues. The IolG showed amino acid sequence similarity of about 50% with IolG of Enterobacter aerogenes and Bacillus subtilis. The His-tagged IolG (HtIolG) fused with hexahistidine at C-terminus was produced and purified from cell extract of recombinant E. coli. The purified HtIolG showed maximal activity at $45^{\circ}C$ and pH 10.5 with the highest activity for MI and D-glucose, and more than 90% of maximal activity for D-chiro-inositol, D-mannitol and D-xylose. $K_m$ and $V_{max}$ values of the HtIolG for MI were 1.83 mM and $0.724{\mu}mol/min/mg$ under the optimal reaction condition, respectively. The activity of HtIolG was increased 1.7 folds by $Zn^{2+}$, but was significantly inhibited by $Co^{2+}$ and SDS.

Biosynthesis of Poly(3HB-3HV) and Poly(3HB-4HB) Copolymers in Recombinant Ralstonia eutropha Enforced zwf

  • Choe, Jae-Cheol;Sin, Hyeon-Dong;Lee, Yong-Hyeon
    • 한국생물공학회:학술대회논문집
    • /
    • 2001.11a
    • /
    • pp.771-774
    • /
    • 2001
  • NADPH has been known as a regulating factor the biosynthesis of polyhydroxyalkanote(PHA), and the flux of NADPH for PHA biosynthesis could be enforced by the amplification of zwf gene encoding glucose 6-phosphate dehydrogenase. The recombinant plasmid pCZWF harboring PHA synthase, phbC from R. eutropha and zwf from E. coli were constructed, and were transformed to R. eutropha by electroporation. The biosynthesis of P(3HB-3HV) copolymer were carried out in transformant R. eutropha through the two-stage cultivation method using valerate as a precursor. The biosynthesis rate and PHA content of transformant R. eutropha harboring pCZWF were increased compared with transformant R. eutropha harboring only phbC. Especially, the molar fraction of 3HV was increased from 68% to 74% due to amplification of zwf gene. And the biosynthesis P(3HB-3HV) and P(3HB-4HB) carried out using propionate and ${\gamma}-butyrolactone$ as a precursor, respectively. But the rate, content, and molar fraction of biosynthesis copolymers were not influenced appreciably. This may be due to the reduced availability of NADPH.

  • PDF

Specific Expression Patterns of xyl1, xyl2, and xyl3 in Response to Different Sugars in Pichia stipitis

  • Han, Ji-Hye;Park, Ju-Yong;Kang, Hyun-Woo;Choi, Gi-Wook;Chung, Bong-Woo;Min, Ji-Ho
    • Journal of Microbiology and Biotechnology
    • /
    • v.20 no.5
    • /
    • pp.946-949
    • /
    • 2010
  • The effects of two different sugars (glucose and xylose) on the expression levels and patterns of the xylose reductase (xyl1), xylitol dehydrogenase (xyl2), and xylulokinase (xyl3) genes were analyzed using Pichia stipitis. A significant increase in mRNA levels of xyl1 was observed after 6 h growth in culture conditions using xylose as a sole carbon source, but expressions of the three genes were not influenced by normal culture media with glucose. In addition, expressions of xyl2 and xyl3 were not observed during the entire culture period during which xylose was added. It also was found that the expression level of xyl1 increased as a function of the xylose concentration (40, 60, and 80 g/l) used in this study, indicating that xyl1 expression sensitively responded to xylose in the culture media. Although the induced level of xyl2 increased slightly after 48 h in the xylose-supplemented culture conditions, the expression of xyl2 was not observed in the xylitol-supplemented culture conditions. Finally, considering the expression of each gene in response to glucose or xylose, the absolute expression levels of the three genes indicate that xyl1 is induced primarily by exposure to xylose.

Characteristics of Insoluble Phosphates Solubilizing by Klebsiella sp. DA71-1/pLYJ (Klebsiella sp. DA71-1/pLYJ의 난용성 인산염 가용화 특성)

  • Ryu, Ah-Reum;Lee, Jin-Woo;Lee, Yong-Seok;Lee, Sang-Cheol;Chung, Soo-Yeol;Choi, Yong-Lark
    • Journal of Life Science
    • /
    • v.16 no.4
    • /
    • pp.676-682
    • /
    • 2006
  • To develop high efficiency biofertilizer solubilizing insoluble phosphates, lactate dehydrogenase (ldh) gene was isolated from Staphylococcus sp. LJ2. Genetic constructions were carried out using the pGEM-T-easy vector and pHSG398. Recombinant DNA plasmids containing the ldh gene were transferred to Klebsiella sp. DA71-1 by electroporation. The selected transformant was named as a DA71-1/pLYJ. The insoluble phosphates solubilization activity of DA71-1/pLYJ was higher than that of DA71-1 at various culture conditions. Glucose was the best carbon source for insoluble phosphates solubilization among the used carbon sources. Maximal insoluble phosphates solubilizing was found in sucrose minimal (SM) medium containing 3% glucose. The solubilizing activity of DA71-1/pLYJ against three types of insoluble phosphates, such as tri-calcium phosphate, hydroxyapatite, aluminium phosphate, were quantitatively determined. The optimal temperature and initial pH to solubilize insoluble phosphates in the SM medium was $37^{\circ}C$ and pH 5.0, respectively.

Effects of Scopoletin Supplementation on Insulin Resistance and Antioxidant Defense System in Chronic Alcohol-Fed Rats (Scopoletin 보충이 만성 알코올을 급여한 흰쥐의 인슐린저항성 및 항산화방어계에 미치는 영향)

  • Lee, Hae-In;Lee, Mi-Kyung
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.2
    • /
    • pp.173-181
    • /
    • 2015
  • This study investigated the effects of scopoletin (6-methoxy-7-hydroxycoumarin) supplementation on insulin resistance and the antioxidant defense system in chronic alcohol-fed rats. Rats were fed a Lieber-Decarli liquid diet containing 5% ethanol with or without two doses of scopoletin (0.01 and 0.05 g/L) for 8 weeks. Pair-fed rats received an isocaloric carbohydrate liquid diet. Chronic alcohol did not affect fasting serum glucose levels, although it induced glucose intolerance and hyperinsulinemia compared with the pair-fed group and led to insulin resistance. Both doses of scopoletin similarly improved glucose intolerance, serum insulin level, and insulin resistance. Scopoletin supplementation significantly activated phosphatidyl inositol 3-kinase, which was inhibited by chronic alcohol. Two doses of scopoletin up-regulated hepatic mRNA expression and activity of glucokinase as well as down-regulated mRNA expression and activity of glucose-6-phosphatase compared with the alcohol control group. Both doses of scopoletin significantly reduced cytochrome P450 2E1 activity and elevated aldehyde dehydrogenase 2 activity, resulting in a lower serum acetaldehyde level compared with the alcohol control group. Chronic alcohol suppressed hepatic mRNA expression and activities of antioxidant enzymes such as superoxide dismutase, catalase, and glutathione peroxidase; however, they were reversed by scopoletin supplementation, which reduced hydrogen peroxide and lipid peroxide levels in the liver. These results indicate that dietary scopoletin attenuated chronic alcohol-induced insulin resistance and activated the antioxidant defense system through regulation of hepatic gene expression in glucose and antioxidant metabolism.

Differentially Expressed Genes in Marine Medaka Fish (Oryzias javanicus) Exposed to Cadmium

  • Woo, Seon-Ock;Son, Sung-Hee;Park, Hong-Seog;Vulpe, Chris D.;Ryu, Jae-Chun;Yum, Seung-Shic
    • Molecular & Cellular Toxicology
    • /
    • v.4 no.4
    • /
    • pp.293-299
    • /
    • 2008
  • To screen the differentially expressed genes in cadmuim-exposed marine medaka fish (Oryzias javanicus), a candidate marine test fish for ecological toxicity, the differential display polymerase chain reaction (DD-PCR) was carried out, since the genome-wide gene expression data are not available in this fish species yet. A total of 35 clones were isolated from cadmium-exposed fish and their nucleotide sequences were analyzed. The differentially expressed gene candidates were categorized to response to stimulus (3); ion binding (3); DNA binding (1); protein binding (6); carbohydrate binding (1); metabolic process (4); biological regulation (3); cellular process (2); protein synthesis (2); catalytic activity (2); sense of sight (1); immune (1); neurohormone (1); signaling activity (1); electron carrier activity (1) and others (3). For real-time quantitative RT-PCR, we selected catalase, glucose-6-phosphate dehydrogenase, heat shock protein 70, and metallothionein and confirmed that cadmium exposure enhanced induction of these four genes.