• Title/Summary/Keyword: globe model

Search Result 71, Processing Time 0.031 seconds

A Study on the Flow Characteristics inside a Glove Valve for Ships (선박용 글로브 밸브의 유동특성에 관한 연구)

  • Bae, Ki-Hwa;Park, Jea-Hyoun;Kang, Sang-Mo
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.32 no.1
    • /
    • pp.110-118
    • /
    • 2008
  • It is essential for the valid design of a marine flow-control valve to exactly know its flow characteristics. The present study has numerically investigated the flow characteristics inside a marine throttle-type globe valve using a kind of commercial CFD code, CFX10.0, with an adoption of the SST (Shear-Stress Transport) turbulence model. To validate the numerical approach, the flow coefficients are compared with the experimental ones. Results show that the globe valve is effective in the control of flow rate according to the opening ratio in case of the forward-direction flow, whereas it is effective in the flow shutoff in case of the reverse-direction flow. Around the inlet of the valve, a recirculation region is formed due to the blunt body shape, the turbulence intensity becomes strengthened and then an abrupt pressure loss occurs.

Developing a Model for Estimating Leaf Temperature of Cnidium officinale Makino Based on Black Globe Temperature (흑구온도를 이용한 천궁 엽온 예측 모델 개발)

  • Seo, Young Jin;Nam, Hyo Hoon;Jang, Won Cheol;Lee, Bu Yong
    • Korean Journal of Medicinal Crop Science
    • /
    • v.26 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Background: The leaf temperature ($T_{LEAF}$) is one of the most important physical parameters governing water and carbon flux, including evapotranspiration, photosynthesis and respiration. Cnidium officinale is one of the important folk medicines for counteracting a variety of diseases, and is particularly used as a traditional medicinal crop in the treatment of female genital inflammatory diseases. In this study, we developed a model to estimate $T_{Leaf}$ of Cnidium officinale Makino based on black globe temperature ($T_{BGT}$). Methods and Results: This study was performed from April to July 2018 in field characterized by a valley and alluvial fan topography. Databases of $T_{LEAF}$ were curated by infrared thermometry, along with meteorological instruments, including a thermometer, a pyranometer, and an anemometer. Linear regression analysis and Student's t-test were performed to evaluate the performance of the model and significance of the parameters. The correlation coefficient between observed $T_{LEAF}$ and calculated $T_{BGT}$ obtained using an equation, developed to predict $T_{LEAF}$ based on $T_{BGT}$ was very high ($r^2=0.9500$, p < 0.0001). There was a positive relationship between $T_{BGT}$ and solar radiation ($r^2=0.8556$, p < 0.0001), but a negative relationship between $T_{BGT}$ and wind speed ($r^2=0.9707$, p < 0.0001). These results imply that heat exchange in leaves seems to be mainly controlled by solar radiation and wind speed. The correlation coefficient between actual and estimated $T_{BGT}$ was 0.9710 (p < 0.0001). Conclusions: The developed model can be used to accurately estimate the $T_{Leaf}$ of Cnidium officinale Makino and has the potential to become a practical alternative to assessing cold and heat stress.

Flow Analysis and Experimental Study of Globe Valve for Precision Control (정밀 제어 글로브 밸브의 유동해석 및 실험적 연구)

  • Choi, Ji-Won;Park, Sun-Hyung;Lee, Kwon-Hee
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.7
    • /
    • pp.734-739
    • /
    • 2016
  • The globe valve is a linear motion valve that is designed primarily to stop, start, and regulate flow. The disk of a globe valve can be removed totally from the flow path or it can completely close the flow path. In this study, numerical analysis using ANSYS-CFX was initially performed to predict the flow coefficient and build a prototype model of a globe valve. The flow coefficient is the volume of water at $15.6^{\circ}C$ that will flow per minute through a valve with a pressure drop of 1 psi across the valve. In other words, it is an important factor for determining the size of the valve. From the analysis results, the fluid flux of water and flow coefficient of the valve were extracted. From the numerical results, a prototype of ultra-fine precision control valve, which can regulate the fluid flow of range 0 ~ 0.1 gal per min, was developed. The experimental results were compared with the numerical results using the flow coefficient ($C_v$) graph. From the comparative results, the flow coefficient ($C_v$) error percentage between the numerical and experimental results was very low, which is acceptable, proving that the proposed prototype model is convincing. In addition, it is possible to predict the flow coefficient using only numerical analysis.

Global Fate of Persistent Organic Pollutants: Multimedia Environmental Modelling and Model Improvement (잔류성 유기오염물질의 전 지구적 거동: 다매체 환경모델의 결과해석 및 개선방안)

  • Choi, Sung-Deuk;Chang, Yoon-Seok
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.12 no.1
    • /
    • pp.24-31
    • /
    • 2007
  • Global fates of polychlorinated biphenyl(PCB) were investigated with a fugacity based multimedia transport and fate model, Globe-POP(persistent organic pollutant). The accumulation of PCB was directly affected by the emission patterns of PCB into the atmosphere and surface areas of environmental compartments. Partition coefficients and reaction rates also influenced on the accumulation patterns of PCB. The emission patterns of PCB in 10 climate zones were consistent for the past 70 years, while the contribution of PCB in high-latitude zones to the globe has increased by cold condensation. Considering the amounts of emission and accumulation of PCB, the North temperature zone is regarded as an important source and sink of PCB. Meanwhile, in spite of no significant sources, POPs accumulate in Antarctic environments mainly due to extremely low temperature. Finally we suggested that a global water balance accounting for snow/ice should be incorporated into multimedia environmental models for high-latitude zones and polar regions with the seasonal snow pack and/or permanent ice caps. The modified model will be useful to evaluate the influence of climate change on the fate of POPs.

New Seat Design and Finite Element Analysis for Anti-Leakage of Globe Valve (글로브 밸브의 누설방지를 위한 시트 설계 및 유한요소해석)

  • Lee, Sung Ho;Kang, Gyeong Ah;Kwak, Jae-Seob;An, Ju Eun;Jin, Dong Hyun;Kim, Byung Tak
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.40 no.1
    • /
    • pp.81-86
    • /
    • 2016
  • The valves used to control or shut off the flow through a pipeline can be divided into many different types, including gate valves, globe valves, and check valves. Globe valves, in particular, have excellent properties, and because they can easily control the flow under high-pressure conditions, they are generally used in LNG ship and steam pipelines. In this paper, a method for changing the shape of a seat was suggested to solve the valve leakage problem from a structural perspective. In addition, the stress distribution and directional deformation were compared for each model. The suggested models were thus validated, and the optimized seat structure, which includes a self-supporting capability for decreasing the amount of leakage, was determined.

Numerical Analysis of the 3-D Flow Field in a Globe Valve Trim under High Pressure Drop (고차압 제어용 글로브 밸브 트림 내부의 3차원 유동장 해석)

  • Yoon, Joon-Yong;Byun, Sung-Joon;Yang, Jae-Mo;Lee, Do-Hyung
    • The KSFM Journal of Fluid Machinery
    • /
    • v.4 no.3 s.12
    • /
    • pp.14-20
    • /
    • 2001
  • Numerical analysis of the three dimensional turbulent flow field in a complex valve trim is carried out to confirm the possibility whether this simulation tool can be used as a design tool or not. The simulation of the incompressible flow in a glove valve is performed by using the commercial code. CFD-ACEA utilizes the finite volume approach as a discretization scheme, and the pressure-velocity coupling is made from SIMPLEC algorithm in it. Four flow cases of the control valve are investigated, and the valve flow coefficient for each case is compared with the experimental data. Simulation results show a good agreement with the experiments, and it is observed that the cavitation model improves the simulation results.

  • PDF

Prognostic Value of Biochemical Response Models for Primary Biliary Cholangitis and the Additional Role of the Neutrophil-to-Lymphocyte Ratio

  • Yoo, Jeong-Ju;Cho, Eun Ju;Lee, Bora;Kim, Sang Gyune;Kim, Young Seok;Lee, Yun Bin;Lee, Jeong-Hoon;Yu, Su Jong;Kim, Yoon Jun;Yoon, Jung-Hwan
    • Gut and Liver
    • /
    • v.12 no.6
    • /
    • pp.714-721
    • /
    • 2018
  • Background/Aims: Recently reported prognostic models for primary biliary cholangitis (PBC) have been shown to be effective in Western populations but have not been well-validated in Asian patients. This study aimed to compare the performance of prognostic models in Korean patients and to investigate whether inflammation-based scores can further help in prognosis prediction. Methods: This study included 271 consecutive patients diagnosed with PBC in Korea. The following prognostic models were evaluated: the Barcelona model, the Paris-I/II model, the Rotterdam criteria, the GLOBE score and the UK-PBC score. The neutrophil-to-lymphocyte ratio (NLR) was analyzed with reference to its association with prognosis. Results: For predicting liver transplant or death at the 5-year and 10-year follow-up examinations, the UK-PBC score (areas under the receiver operating characteristic curve [AUCs], 0.88 and 0.82) and GLOBE score (AUCs, 0.85 and 0.83) were significantly more accurate in predicting prognosis than the other scoring systems (all p<0.05). There was no significant difference between the performance of the UK-PBC and GLOBE scores. In addition to the prognostic models, a high NLR (>2.46) at baseline was an independent predictor of reduced transplant-free survival in the multivariate analysis (adjusted hazard ratio, 3.74; p<0.01). When the NLR was applied to the prognostic models, it significantly differentiated the prognosis of patients. Conclusions: The UK-PBC and GLOBE scores showed good prognostic performance in Korean patients with PBC. In addition, a high NLR was associated with a poorer prognosis. Including the NLR in prognostic models may further help to stratify patients with PBC.

New Approach to Air Quality Management (대기오염관리의 새로운 접근방법)

  • 윤명조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

Optimization of Several Environmental Factors to Human Performance by Using Taguchi Method

  • Ismail, A.R.;Haniff, M.H.M.;Yusof, M.Y.M.;Rahman, M.N.A.;Ghani, J.A.
    • Industrial Engineering and Management Systems
    • /
    • v.9 no.2
    • /
    • pp.157-164
    • /
    • 2010
  • The objective of this study is to determine the dominance effects of environmental factors such as Illuminance, humidity and Wet Bulb Globe Temperature (WBGT) on the operators' productivity at Malaysian electronic industry. A case study was carried out at an electronic components assembly factory. The environmental factors examined were the Illuminance (lux), humidity and WBGT of the surrounding workstation area. Two sets of representative data including the illuminance, humidity and WBGT level and production rate were collected during the study. The production rate data were collected through observations and survey questionnaires while the illuminance level was measured using photometer model RS 180-7133, the humidity and WBGT level were measured by using Quest Temp apparatus and humidity. Taguchi Method was utilized to find the sequence of dominant factors that contributed to the productivity of operator at that specified production workstation. The study reveals that the dominant factor contributed to the productivity was WBGT, followed by illuminance and humidity.

Estimation of Extreme Heat Exposure at Outdoor Construction Sites through Wet Bulb Globe Temperature Modeling (습구흑구온도지수 모델링을 통한 옥외 건설 현장의 고열 노출수준 추정)

  • Saemi, Shin;Hea Min, Lee;Nosung, Ki;Jung Soo, Chae;Sang-Hoon, Byeon
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.32 no.4
    • /
    • pp.402-413
    • /
    • 2022
  • Objectives: In this study, the scale of exceeding the extreme heat exposure standard at the construction site was estimated using the nationally approved statistical data and wet bulb globe temperature modeling method. By comparing and analyzing the modeling results with the existing work environment monitoring results, the risk of heat exposure at outdoor construction sites was considered. Methods: Using the coordinates of second level administrative districts and meteorological observatories as the key, the automated synoptic observing system data and building permit data for 2021 were matched. The wet-bulb temperature was obtained using Stull's formula, and the globe temperature was obtained using the TgKMA2006 model. WBGT was calculated using these. Excess rates were obtained compared to exposure limits for heavy work-continuous work and moderate work-25% rest. It was compared with the results of the work environment monitoring in 2020. Results: As a result, 1,827,536 cases were estimated for 11,052 workplaces in one year. This is much higher than the 5,116 cases of 3818 workplaces of the existing work environment monitoring results. It is confirmed that the exposure limit was exceeded in 10.6~24.0% of the entire period and 70.2~84.1% of the peak period of the heat wave. It is very high compared to 0.9% of the existing work environment monitoring result. Conclusions: It is necessary to improve the system of monitoring and statistics related to extreme heat. Additional considerations are needed regarding WBGT estimation methods, meteorological data, and evaluation time. Various follow-up risk assessment studies for other industries and time series need to be continued.