• 제목/요약/키워드: global-local numerical approach

검색결과 63건 처리시간 0.032초

Towards robust viscoelastic-plastic-damage material model with different hardenings/softenings capable of representing salient phenomena in seismic loading applications

  • Jehel, Pierre;Davenne, Luc;Ibrahimbegovic, Adnan;Leger, Pierre
    • Computers and Concrete
    • /
    • 제7권4호
    • /
    • pp.365-386
    • /
    • 2010
  • This paper presents the physical formulation of a 1D material model suitable for seismic applications. It is written within the framework of thermodynamics with internal variables that is, especially, very efficient for the phenomenological representation of material behaviors at macroscale: those of the representative elementary volume. The model can reproduce the main characteristics observed for concrete, that is nonsymetric loading rate-dependent (viscoelasticity) behavior with appearance of permanent deformations and local hysteresis (continuum plasticity), stiffness degradation (continuum damage), cracking due to displacement localization (discrete plasticity or damage). The parameters have a clear physical meaning and can thus be easily identified. Although this point is not detailed in the paper, this material model is developed to be implemented in a finite element computer program. Therefore, for the benefit of the robustness of the numerical implementation, (i) linear state equations (no local iteration required) are defined whenever possible and (ii) the conditions in which the presented model can enter the generalized standard materials class - whose elements benefit from good global and local stability properties - are clearly established. To illustrate the capabilities of this model - among them for Earthquake Engineering applications - results of some numerical applications are presented.

바이러스-진화 유전 알고리즘을 이용한 비선형 시스템의 퍼지모델링 (Fuzzy Modeling for Nonlinear Systems Using Virus-Evolutionary Genetic Algorithm)

  • 이승준;주영훈;장욱;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 하계학술대회 논문집 B
    • /
    • pp.522-524
    • /
    • 1999
  • This paper addresses the systematic approach to the fuzzy modeling of the class of complex and uncertain nonlinear systems. While the conventional genetic algorithm (GA) only searches the global solution, Virus-Evolutionary Genetic Algorithm(VEGA) can search the global and local optimal solution simultaneously. In the proposed method the parameter and the structure of the fuzzy model are automatically identified at the same time by using VEGA. To show the effectiveness and the feasibility of the proposed method, a numerical example is provided. The performance of the proposed method is compared with that of conventional GA.

  • PDF

Two-dimensional rod theory for approximate analysis of building structures

  • Takabatake, Hideo
    • Earthquakes and Structures
    • /
    • 제1권1호
    • /
    • pp.1-19
    • /
    • 2010
  • It has been known that one-dimensional rod theory is very effective as a simplified analytical approach to large scale or complicated structures such as high-rise buildings, in preliminary design stages. It replaces an original structure by a one-dimensional rod which has an equivalent stiffness in terms of global properties. If the structure is composed of distinct constituents of different stiffness such as coupled walls with opening, structural behavior is significantly governed by the local variation of stiffness. This paper proposes an extended version of the rod theory which accounts for the two-dimensional local variation of structural stiffness; viz, variation in the transverse direction as well as longitudinal stiffness distribution. The governing equation for the two-dimensional rod theory is formulated from Hamilton's principle by making use of a displacement function which satisfies continuity conditions across the boundary between the distinct structural components in the transverse direction. Validity of the proposed theory is confirmed by comparison with numerical results of computational tools in the cases of static, free vibration and forced vibration problems for various structures.

바이러스-메시 유전 알고리즘에 의한 퍼지 모델링 (The Fuzzy Modeling by Virus-messy Genetic Algorithm)

  • 최종일;이연우;주영훈;박진배
    • 한국지능시스템학회:학술대회논문집
    • /
    • 한국퍼지및지능시스템학회 2000년도 추계학술대회 학술발표 논문집
    • /
    • pp.157-160
    • /
    • 2000
  • This paper deals with the fuzzy modeling for the complex and uncertain system in which conventional and mathematical models may fail to give satisfactory results. mGA(messy Genetic Algorithm) has more effective and adaptive structure than sGA with respect to using changeable-length string and VEGA(Virus Evolution Genetic) Algorithm) can search the global and local optimal solution simultaneously with reverse transcription operator and transduction operator. Therefore in this paper, the optimal fuzzy model is obtained using Virus-messy Genetic Algorithm(Virus-mGA). In this method local information is exchanged in population so that population may sustain genetic divergence. To prove the surperioty of the proposed approach, we provide the numerical example.

  • PDF

다단계 혼성근사화에 의한 부구조화 기반 구조 재해석 (Substructuring-based Structural Reanalysis by Multilevel Hybrid Approximation)

  • 황진하;김경일;이학술
    • 한국전산구조공학회논문집
    • /
    • 제12권3호
    • /
    • pp.397-406
    • /
    • 1999
  • 본 연구는 부구조화에 기초한 다단계 혼성 구조 재해석방법을 제시한다. 부구조화의 틀에 보존근사화의 각 항을 차원축소법의 기저로 한 보존 전역-부분근사화에 의하여 변위 산정의 정확성과 효율성을 확보하고, 이를 바탕으로 이미 구성된 응력-변위 관계식을 병용하는 혼성방식을 통하여 전체 설계의 중간 단계에서 반복되는 재해석 과정의 신뢰성을 높인다. 전체적으로 선형근사화와 상반근사화를 교차적용하는 1단계 보존근사화로부터 전역 근사화와 결합하여 구하는 변위산정과 그에 종속되는 행렬연산으로 산출하는 응력계산의 3단계로 이루어지는 본 방법은 대형 구조계를 대상으로 하여, 해석의 기본 틀로 부구조화 방법을 택하였으며, 몇 개의 예제들을 통하여 타당성 및 유용성을 검증하였다.

  • PDF

Evaluation of seismic strengthening techniques for non-ductile soft-story RC frame

  • Karki, Prajwol;Oinam, Romanbabu M.;Sahoo, Dipti Ranjan
    • Advances in concrete construction
    • /
    • 제9권4호
    • /
    • pp.423-435
    • /
    • 2020
  • Open ground story (OGS) reinforced concrete (RC) buildings are vulnerable to the complete collapse or severe damages under seismic actions. This study investigates the effectiveness of four different strengthening techniques representing the local and global modifications to improve the seismic performance of a non-ductile RC OGS frame. Steel caging and concrete jacketing methods of column strengthening are considered as the local modification techniques, whereas steel bracing and RC shear wall systems are selected as the global strengthening techniques in this study. Performance-based plastic design (PBPD) approach relying on energy-balance concept has been adopted to determine the required design force demand on the strengthening elements. Nonlinear static and dynamic analyses are carried out on the numerical models of study frames to assess the effectiveness of selected strengthening techniques in improving the seismic performance of OGS frame.. Strengthening techniques based on steel braces and RC shear wall significantly reduced the peak interstory drift response of the OGS frame. However, the peak floor acceleration of these strengthened frames is amplified by more than 2.5 times as compared to that of unstrengthened frame. Steel caging technique of column strengthening resulted in a reasonable reduction in the peak interstory drift response without substantial amplification in peak floor acceleration of the OSG frame.

Analysis of rigid and semi-rigid steel-concrete composite joints under monotonic loading - Part I: Finite element modelling and validation

  • Amadio, C.;Fragiacomo, M.
    • Steel and Composite Structures
    • /
    • 제3권5호
    • /
    • pp.349-369
    • /
    • 2003
  • The paper concerns the modelling of rigid and semi-rigid steel-concrete composite joints under monotonic loading through use of the Abaqus program, a widespread finite element code. By comparing numerical and experimental results obtained on cruciform tests, it is shown that the proposed modelling allows a good fit of the global joint response in terms of moment-rotation law. Even the local response in terms of stresses and strains is adequately predicted. Hence, this numerical approach may represent a useful tool for attaining a better understanding of experimental results. It may also be used to perform parametric analyses and to calibrate simplified mechanical models for practical applications.

Discrete optimal sizing of truss using adaptive directional differential evolution

  • Pham, Anh H.
    • Advances in Computational Design
    • /
    • 제1권3호
    • /
    • pp.275-296
    • /
    • 2016
  • This article presents an adaptive directional differential evolution (ADDE) algorithm and its application in solving discrete sizing truss optimization problems. The algorithm is featured by a new self-adaptation approach and a simple directional strategy. In the adaptation approach, the mutation operator is adjusted in accordance with the change of population diversity, which can well balance between global exploration and local exploitation as well as locate the promising solutions. The directional strategy is based on the order relation between two difference solutions chosen for mutation and can bias the search direction for increasing the possibility of finding improved solutions. In addition, a new scaling factor is introduced as a vector of uniform random variables to maintain the diversity without crossover operation. Numerical results show that the optimal solutions of ADDE are as good as or better than those from some modern metaheuristics in the literature, while ADDE often uses fewer structural analyses.

A decentralized approach to damage localization through smart wireless sensors

  • Jeong, Min-Joong;Koh, Bong-Hwan
    • Smart Structures and Systems
    • /
    • 제5권1호
    • /
    • pp.43-54
    • /
    • 2009
  • This study introduces a novel approach for locating damage in a structure using wireless sensor system with local level computational capability to alleviate data traffic load on the centralized computation. Smart wireless sensor systems, capable of iterative damage-searching, mimic an optimization process in a decentralized way. The proposed algorithm tries to detect damage in a structure by monitoring abnormal increases in strain measurements from a group of wireless sensors. Initially, this clustering technique provides a reasonably effective sensor placement within a structure. Sensor clustering also assigns a certain number of master sensors in each cluster so that they can constantly monitor the structural health of a structure. By adopting a voting system, a group of wireless sensors iteratively forages for a damage location as they can be activated as needed. Since all of the damage searching process occurs within a small group of wireless sensors, no global control or data traffic to a central system is required. Numerical simulation demonstrates that the newly developed searching algorithm implemented on wireless sensors successfully localizes stiffness damage in a plate through the local level reconfigurable function of smart sensors.

A methodology for assessing fatigue life of a countersunk riveted lap joint

  • Li, Gang;Renaud, Guillaume;Liao, Min;Okada, Takao;Machida, Shigeru
    • Advances in aircraft and spacecraft science
    • /
    • 제4권1호
    • /
    • pp.1-19
    • /
    • 2017
  • Fatigue life prediction of a multi-row countersunk riveted lap joint was performed numerically. The stress and strain conditions in a highly stressed substructure of the joint were analysed using a global/local finite element (FE) model coupling approach. After validation of the FE models using experimental strain measurements, the stress/strain condition in the local three-dimensional (3D) FE model was simulated under a fatigue loading condition. This local model involved multiple load cases with nonlinearity in material properties, geometric deformation, and contact boundary conditions. The resulting stresses and strains were used in the Smith-Watson-Topper (SWT) strain life equation to assess the fatigue "initiation life", defined as the life to a 0.5 mm deep crack. Effects of the rivet-hole clearance and rivet head deformation on the predicted fatigue life were identified, and good agreement in the fatigue life was obtained between the experimental and the numerical results. Further crack growth from a 0.5 mm crack to the first linkup of two adjacent cracks was evaluated using the NRC in-house tool, CanGROW. Good correlation in the fatigue life was also obtained between the experimental result and the crack growth analysis. The study shows that the selected methodology is promising for assessing the fatigue life for the lap joint, which is expected to improve research efficiency by reducing test quantity and cost.