• Title/Summary/Keyword: global rice

Search Result 239, Processing Time 0.029 seconds

$N_2O$ Emissions with Different Land-Use Patterns in a Basin (유역 내 토지이용도에 따른 $N_2O$ 배출양상)

  • Seo, Ju-Young;Kang, Ho-Jeong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.34 no.2
    • /
    • pp.86-90
    • /
    • 2012
  • The gaseous product of nitrogen cycle, nitrous oxide ($N_2O$) is a potent greenhouse gas whose Global Warming Potential (GWP) is about 300 times greater than $CO_2$. The dynamics of $N_2O$ emission are controlled by such environments and soil conditions. The main aim of this study is to investigate variations of $N_2O$ emission and its controlling factors with different land-use patterns in Haean basin. A forest, a radish field and a rice paddy were selected as three different land-use patterns. Their $N_2O$ emissions were measured every month during a growing season. We also collected soil samples with seasons and analyzed soil characteristics including inorganic nitrogen content. $N_2O$ emission was greatest at the radish field likely due to anthropogenic nitrogen addition by fertilization. Soils of forest and rice paddy also contained inorganic nitrogen originated from organic matter. However, the spatial variation was great and it looks that nitrogen cycle and $N_2O$ production were slower than that of radish field. Intensive observation and control of fertilization would be requiredto adjust $N_2O$ emission from agriculture soils.

Thermophile mushroom cultivation in Cambodia: Spawn production and development of a new substrate, acacia tree sawdust

  • Chang, Hyun-You;Huh, Youn-ju;Soeun, Pisey;Lee, Seung-ho;Song, Iva;Sophatt, Reaksmey;Seo, Geum-Hui
    • Journal of Mushroom
    • /
    • v.14 no.1
    • /
    • pp.1-5
    • /
    • 2016
  • To minimize cultivation costs, prevent insect-pest infestation, and improve the production efficiency of thermophilic mushrooms, plant substrates obtained from local areas in Cambodia were used for production of both spawn and mushrooms. In this experiment, different sawdusts different organic wastes and grain ingredients and analyzed for improvement of spawn-production efficiency. Four thermophilic mushroom species, Pleurotus sajor-caju (oyster mushroom, Sambok), Ganoderma lucidum (deer horn shaped), Auricularia auricula (ear mushroom), and Lentinula edodes (shiitake), were used to identify efficient new substrates for spawn and mushroom production. Although the mycelia in the rubber tree sawdust medium showed a slightly slower growth rate (10.9 cm/15 days) than mycelia grown in grains (11.2 cm/15 days in rice seeds), rubber tree sawdust appeared to be an adequate replacement for grain spawn substrates. Th findings indicate that rubber tree sawdust, sugarcane bagasse, and acacia tree sawdust supplemented with rice bran and calcium carbonate could be new alternative the substrates for. Although sugarcane bagasse and rubber tree sawdust showed similarly high biological efficiencies (BE) of 60% and 60.8%, respectively, acacia tree sawdust exhibited relatively a low biological efficiency of 22.4%. However, it is expected that acacia sawdust has potential for the mushroom cultivation when supplemented with currently used sawdust substrates in Cambodia, because of its relatively low price. The price of the sawdust (20 kg sawdust= 6500 Riel or 1.6 USD) currently used was 6.5 times higher than the price of acacia sawdust (201000 Riel or 0.25 USD). Therefore, utilization for acacia sawdust for mushroom cultivation could become feasible as it would reduce by producing costs of mushrooms in rural areas of Cambodia.

An early warning and decision support system to reduce weather and climate risks in agricultural production

  • Nakagawa, Hiroshi;Ohno, Hiroyuki;Yoshida, Hiroe;Fushimi, Erina;Sasaki, Kaori;Maruyama, Atsushi;Nakano, Satoshi
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.303-303
    • /
    • 2017
  • Japanese agriculture has faced to several threats: aging and decrease of farmer population, global competition, and the risk of climate change as well as harsh and variable weather. On the other hands, the number of large scale farms is increasing, because farm lands have been being aggregated to fewer numbers of farms. Cost cutting, development of efficient ways to manage complicatedly scattered farm lands, maintaining yield and quality under variable weather conditions, are required to adapt to changing environments. Information and communications technology (ICT) would contribute to solve such problems and to create innovative technologies. Thus we have been developing an early warning and decision support system to reduce weather and climate risks for rice, wheat and soybean production in Japan. The concept and prototype of the system will be shown. The system consists of a weather data system (Agro-Meteorological Grid Square Data System, AMGSDS), decision support contents where information is automatically created by crop models and delivers information to users via internet. AMGSDS combines JMA's Automated Meteorological Data Acquisition System (AMeDAS) data, numerical weather forecast data and normal values, for all of Japan with about 1km Grid Square throughout years. Our climate-smart system provides information on the prediction of crop phenology, created with weather forecast data and crop phenology models, as an important function. The system also makes recommendations for crop management, such as nitrogen-topdressing, suitable harvest time, water control, pesticide spray. We are also developing methods to perform risk analysis on weather-related damage to crop production. For example, we have developed an algorism to determine the best transplanting date in rice under a given environment, using the results of multi-year simulation, in order to answer the question "when is the best transplanting date to minimize yield loss, to avoid low temperature damage and to avoid high temperature damage?".

  • PDF

Reference evapotranspiration estimates based on meteorological variables over Korean agro-climatic zones for rice field (남한지역의 논 농업기후지대에 대한 기상자료 기반의 기준 증발산량 추정)

  • Jung, Myung-Pyo;Hur, Jina;Shim, Kyo-Moon;Kim, Yongseok;Kang, Kee-Kyung;Choi, Soon-Kun;Lee, Byeong-Tae
    • Korean Journal of Agricultural and Forest Meteorology
    • /
    • v.21 no.4
    • /
    • pp.229-237
    • /
    • 2019
  • This study was conducted to estimate annual reference evapotranspiration (ET0) for the agro-climatic zones for rice paddy fields in South Korea between 1980 and 2015. The daily ET0 was estimated by applying the Penman-Monteith method to meteorological data from 61 weather stations provided by Korean Meteorological Administration (KMA). The average of annual ET0 from 1980 to 2015 was 1334.1±33.89 mm. The ET0 was the highest at the Southern Coastal Zone due to their higher air temperature and lower relative humidity. The ET0 had significantly increased with 2.81 mm/yr for the whole zones over 36 years. However, the change rate of it was different among agro-climatic zones. The annual ET0 highly increased in central zones and eastern coastal zones. In terms of correlation coefficient, the temporal change of the annual ET0 was closely related to variations of four meteorological factors (i.e., mean, minimum temperatures, sunshine duration, and relative humidity). The results demonstrated that whole Korean agro-climatic zones have been undergoing a significant change in the annual ET0 for the last 36 years. Understanding the spatial pattern and the long-term variation of the annual ET0 associated with global warming would be useful to improve crop and water resource managements at each agro-climatic zone of South Korea.

Development of Glucoamylase & Simultaneous Saccharification and Fermentation Process for High-yield Bioethanol (고효율 바이오 에탄올 생산을 위한 당화효소 개발 및 동시당화발효 공정 연구)

  • Choi, Gi-Wook;Han, Min-Hee;Kim, Yule
    • KSBB Journal
    • /
    • v.23 no.6
    • /
    • pp.499-503
    • /
    • 2008
  • The bioethanol for use as a liquid fuel by fermentation of renewable biomass as an alternative to petroleum is important from the viewpoint of global environmental protection. Recently, many scientists have attempted to increase the productivity of bioethanol process by developing specific microorganism as well as optimizing the process conditions. In the present study, which is based on our previous investigation on the pretreatment process, theproductivity of bioethanol obtained from simultaneous saccharification and fermentation (SSF) process was compared between various domestic materials including barley, brown rice, corn and sweet potato. Additionally, Solid glucoamylase (SGA; developed in Changhae Co.), from modified strain with UV, was used. The result was compared to commercial glucoamylase (GA). It was observed that the fermentation rate was increased together with the yield which can be derived from the final ethanol concentration. Especially, in the case of brown rice, compared to the experimental results using GA, the final ethanol concentration was 1.25 times higher and 18.4 g/L of the yield was increased. Also, the time required for reaching 95% of the maximum ethanol concentration is significantly reduced, which is approximately 36 hours, compared to 88 hours using GA. It means that SGA has excellent saccharogenic power.

Assessing Future Water Demand for Irrigating Paddy Rice under Shared Socioeconomic Pathways (SSPs) Scenario Using the APEX-Paddy Model (APEX-paddy 모델을 활용한 SSPs 시나리오에 따른 논 필요수량 변동 평가)

  • Choi, Soon-Kun;Cho, Jaepil;Jeong, Jaehak;Kim, Min-Kyeong;Yeob, So-Jin;Jo, Sera;Owusu Danquah, Eric;Bang, Jeong Hwan
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.63 no.6
    • /
    • pp.1-16
    • /
    • 2021
  • Global warming due to climate change is expected to significantly affect the hydrological cycle of agriculture. Therefore, in order to predict the magnitude of climate impact on agricultural water resources in the future, it is necessary to estimate the water demand for irrigation as the climate change. This study aimed at evaluating the future changes in water demand for irrigation under two Shared Socioeconomic Pathways (SSPs) (SSP2-4.5 and SSP5-8.5) scenarios for paddy rice in Gimje, South Korea. The APEX-Paddy model developed for the simulation of paddy environment was used. The model was calibrated and validated using the H2O flux observation data by the eddy covariance system installed at the field. Sixteen General Circulation Models (GCMs) collected from the Climate Model Intercomparison Project phase 6 (CMIP6) and downscaled using Simple Quantile Mapping (SQM) were used. The future climate data obtained were subjected to APEX-Paddy model simulation to evaluate the future water demand for irrigation at the paddy field. Changes in water demand for irrigation were evaluated for Near-future-NF (2011-2040), Mid-future-MF (2041-2070), and Far-future-FF (2071-2100) by comparing with historical data (1981-2010). The result revealed that, water demand for irrigation would increase by 2.3%, 4.8%, and 7.5% for NF, MF and FF respectively under SSP2-4.5 as compared to the historical demand. Under SSP5-8.5, the water demand for irrigation will worsen by 1.6%, 5.7%, 9.7%, for NF, MF and FF respectively. The increasing water demand for irrigating paddy field into the future is due to increasing evapotranspiration resulting from rising daily mean temperatures and solar radiation under the changing climate.

Characterization of Heading- and Yield-related Gene Loci in the Cheongcheong/Nagdong Doubled Haploid Line using Rice QTLs (청청/낙동 배가반수체 집단에서 QTL을 통한 출수기와 수량관련 유전자좌 분석)

  • Jang, Yoon-Hee;Park, Jae-Ryoung;Kim, Kyung-Min
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.64 no.1
    • /
    • pp.1-17
    • /
    • 2019
  • A quantitative trait loci (QTL) analysis of traits related to heading and yield was performed develop rice cultivars that are both early maturing and panicle weight type varieties. Our analysis included 120 strains of the Cheongcheong Nagdong doubled haploid (CNDH) variety. An observational growth experiment was conducted to identify genetic agronomic traits of CNDH. Heading date, ten plant weight, moisture, thousand grain weight, and yield had a normal distribution based on the frequency distribution table of the observational growth data. The QTL analysis found one heading-related and nine yield-related QTLs. The LOD of 2.85 was the largest in QTLs for heading date (QHD), 5.39 in QTLs for ten plant weight (QTPW), 3.92 in QTLs for moisture (QM), 4.80 in QTLs for thousand grain weight (QTGW), and 3.7 in QTLs for yield (QY). Genomic analysis detected 58 candidate genes on chromosome 2, 3, 7, 8, and 10. Among those, we found Rcd1 protein and OsERF3 gene in QM, MtN3 and zinc finger protein genes in QTGW, and OsNAC3 protein gene in QY. If further analysis reveals the presence of genes related to water content, thousand grain weight or yield in the CNDH stains, we can develop a selection of varieties that will be capable of coping with climate change and will contribute to global food problems.

Selection and Application of Multipurpose Farmland Sites Using the Farm Manager Registration Records and Spatial Data (농업경영체 등록정보와 공간정보를 활용한 농지범용화 사업 대상지 선정 방안 개발 및 적용)

  • Na, Ra;Joo, Donghyuk;Kim, Hayoung;Yoo, Seung-Hwan;Kwak, Yeong-cheol;Kim, Jeonghoon;Yi, Hyangmi;Cho, Eun Jung
    • Journal of Korean Society of Rural Planning
    • /
    • v.28 no.1
    • /
    • pp.17-26
    • /
    • 2022
  • It is necessary to prepare a stable production base in advance for a change in the global grain market, and it is required to prepare comprehensive countermeasures such as securing technical skills and cultivation technology. Therefore, Korea, which relies on imports of major grains other than rice, could be exposed to a food crisis at any time unless the self-sufficiency rate of grains is improved. In order to respond to this new food crisis, it is necessary to find ways to efficiently utilize rice fields to increase the domestic grain self-sufficiency rate. From this point of view, interest and demand for the generalization of farmland that can be used as paddy fields and returned to paddy fields are increasing, and related research is also being continuously performed. In order to select a multipurpose farmland project site, this study extracted farmland containing 10% or more purchased and stockpiled farmland through spatial analysis (buffer, dissolve, intersect, etc.), and finally presented areas subject to multipurpose farmland projects. The target site for the multipurpose farmland project was finally selected by integrating data onto a point-by-point basis so that the current status of farmland purchased and stockpiled, Farm Manager Registration Records, and the Korean Soil Information System data (drainage classes, surface soil texture, field-suitability classification, etc.) can be used in combination. There are 175 areas where the multipurpose farmland is possible. Incheon 2, Gyeongbuk 40, Gangwon 2, Chungbuk 7, Chungnam 48, Jeonbuk 34, Jeonnam 19, Gyeongbuk 15, Gyeongnam 8. Chungcheongnam-do has the most target site for the multipurpose farmland project, and Gangwon-do is the least. It is expected to contribute to new commercialization and business expansion by deriving business areas by identifying the scale of the farmland multipurpose farmland project using Farm Manger Registration Records and spatial data.

Study on effect on CO2 flux of wetland soil by feces of Korean water deer(Hydropotes inermis) (고라니(Hydropotes inermis)의 분변이 습지 토양의 CO2 flux에 미치는 영향)

  • Park, Hyomin;Chun, Seunghoon;Lee, Sangdon
    • Journal of Wetlands Research
    • /
    • v.17 no.3
    • /
    • pp.283-292
    • /
    • 2015
  • The total global emission of $CO_2$ from soils is recognized as one of the largest fluxes in the global carbon cycle. Especially it is necessary to quantify the amount of $CO_2$ emitted by the organic material decomposition processes of microorganisms in the soil, because it becomes one of a factor for determining the carbon stocks in the soil. This study was conducted to estimate the impact of the Korean water deer(Hydropotes inermis)' feces to the soil organic matter. Also, effects of Korean water deer' feces on $CO_2$ emissions of soil and land use pattern dependent $CO_2$ flux quantification are studied. The organic materials in the Korean water deer' feces significantly changed organic matter content of soil and influenced the activity of soil microorganisms, both changing of respiration of the soil and physical chemical components in soil. In particular, C/N ratio and the $CO_2$ flux of soil of four regions (Rice paddy, Fallow ground, Salix koreensis community, Phragmites australis community) showed a statistically highly significant correlation (P<0.01) with the presence or absence of feces. $CO_2$ flux of soil affected by the feces was 2-20 times higher than the soil unaffected by the feces. This study has great significance to quantify the extent of the material circulation and its impact to the terrestrial ecosystem and soil zone throughout Korean water deer' feces. Feces of wildlife can affect soil and soil material circulation.

Review of property and utilization of oil crop for biodiesel (바이오디젤 원료작물의 기름 및 지방산 특성에 따른 활용방안 고찰)

  • Jang, Young-Seok;Kim, Kwang-Soo;Lee, Yong-Hwa;Cho, Hyeon-Jun;Suh, Sae-Jung
    • Journal of Plant Biotechnology
    • /
    • v.37 no.1
    • /
    • pp.25-46
    • /
    • 2010
  • The demand for fuel and energy resources continues to grow due to increased consumption and emerging economies in all parts of the world. With this increase in demand, crude oil prices in the international market has jumped dramatically. Global warming, which is a consequence of increasing greenhouse gas (GHG) emissions, has become scientific, social, and political concerns. To cope with global warming and energy crisis, cost-competitive biofuels are urgently needed. In addition, development of an infrastructure, which supplies energy stably and diversifies energy resources, as well as new cost-saving technologies should be developed to reduce the costs of producing biofuels. Due to high oleic acid content, rapeseed (Brassica napus L.) is currently the potential feedstock for biodiesel production in temperate zone region and the production and use of rapeseed oil is already commercialized in Europe. In Korea double-cropping (rice and rapeseed) became more prevalent because it reduces competitions from land constraints. Production of rapeseed as a biodiesel feedstock may reduce the influence of rising oil prices and nation's dependence on imported petroleum and increase job opportunities and farm incomes.