• Title/Summary/Keyword: global pipeline

Search Result 63, Processing Time 0.027 seconds

A Comparative Study of Subsea Pipeline Global Buckling Control Method (해저 파이프라인의 전체 좌굴 제어 방법 비교)

  • Kim, Koo;Kim, Do-Kyun;Choi, Han-Suk;Park, Kyu-Sik
    • Journal of the Korean Society for Advanced Composite Structures
    • /
    • v.6 no.1
    • /
    • pp.51-58
    • /
    • 2015
  • Global buckling is a bending of pipeline and it occurs when the stability of pipeline is distributed by excessive axial force. Subesea pipeline is subjected to axial force induced by temperature and pressure from well and resulting phenomena should be controlled in appropriate manner. Global buckling of subsea pipeline is still ongoing research subject and is studied various organization. In this study, various control methods such as buoyancy module, sleeper, and snake lay for global buckling of subsea pipeline were numerically investigated with various design parameters. From the numerical simulation results, the global buckling control method using sleepers shows better results than buoyancy module and snake lay control methods in the sense of combined stress after buckling. Furthermore, the global buckling of full scale pipeline of 80km with uneven seabed profile were successfully managed when the sleeper was installed.

Optimization of Storage Tank Installation Locations for Pipeline Water Supply Using Genetic Algorithm (유전자 알고리즘을 이용한 관수 저류조의 공간배치 최적화)

  • Hong, Rokgi;Park, Jinseok;Jang, Seongju;Lee, Hyeokjin;Song, Inhong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.64 no.6
    • /
    • pp.43-53
    • /
    • 2022
  • Rice paddy has been actively converted into upland crop fields as more profitable upland crop cultivation are encouraged along with the decrease in rice consumption. However, the current water supply system remains mainly for paddy water supply, so research on pipeline water supply for upland cultivation is needed. The objective of this study was to optimize storage tank installation locations for pipeline water supply in reservoir irrigation districts. Five of reservoir irrigation districts were selected as the study sites and gridded of 10×10 m in size. Then genetic algorithm was adopted to evaluate the effects of spatial storage tank allocation on total pipeline cost. The lengths of the main and branch pipelines were considered as the objective cost function for the optimization of storage tank installation. Overall the shorter the branch pipeline and the longer the main pipeline, as the number of storage tanks increase. The minimal pipeline cost, i.e., optimal condition was reached when approximately 10% of the storage tank numbers to total upland plots were installed. The methodology presented in this study can be applied to determine the number and spatial arrangement of storage tanks for upland pipeline irrigation system design.

Supplementation of Regulation on the Offshore Oil Pipeline for Maintenance (해저 송유배관 유지관리를 위한 기준 보완 제시)

  • Kang, Chan-Seong;Moon, Seung-Jae
    • Plant Journal
    • /
    • v.8 no.2
    • /
    • pp.70-81
    • /
    • 2012
  • The study aims to supplement facility management plan and safety regulations & standard of oil pipeline by searching and reviewing related regulation & standard inside and outside of the country. Korean regulation & standard is reviewed based on harbor and fishery design standard of the ministry of maritime affairs and fisheries, general technology standard of oil pipeline safety regulation, gas excavation construction and safety maintenance indicator of Korea gas corporation. Global regulation & standard is reviewed based on U.S standard inspection for offshore pipeline and Europe/Mexico standard inspection for offshore pipeline. The contents of offshore pipeline installation is inserted into pipeline sector for objected facilities of safety inspection regulation & standard and, the standard of safety inspection for offshore pipeline is newly presented into pipeline maintenance part of the planning facilities management with its inspection period and method.

  • PDF

Seismic behavior of deep-sea pipeline after global buckling under active control

  • Jianshuo Wang;Tinghao Meng;Zechao Zhang;Zhihua Chen;Hongbo Liu
    • Earthquakes and Structures
    • /
    • v.26 no.4
    • /
    • pp.261-267
    • /
    • 2024
  • With the increase in the exploitation depth of offshore oil and gas, it is possible to control the global buckling of deep-sea pipelines by the snake lay method. Previous studies mainly focused on the analysis of critical buckling force and critical temperature of pipelines under the snake-like laying method, and pipelines often suffer structural failure due to seismic disasters during operation. Therefore, seismic action is a necessary factor in the design and analysis of submarine pipelines. In this paper, the seismic action of steel pipes in the operation stage after global buckling has occurred under the active control method is analyzed. Firstly, we have established a simplified finite element model for the entire process cycle and found that this modeling method is accurate and efficient, solving the problem of difficult convergence of seismic wave and soil coupling in previous solid analysis, and improving the efficiency of calculations. Secondly, through parameter analysis, it was found that under seismic action, the pipe diameter mainly affects the stress amplitude of the pipeline. When the pipe wall thickness increases from 0.05 m to 0.09 m, the critical buckling force increases by 150%, and the maximum axial stress decreases by 56%. In the pipe soil interaction, the greater the soil viscosity, the greater the pipe soil interaction force, the greater the soil constraint on the pipeline, and the safer the pipeline. Finally, the pipeline failure determination formula was obtained through dimensionless analysis and verified, and it was found that the formula was accurate.

Global Positioning System 응용을 위한 파이프라인 형 CORDIC회로 설계

  • 이은균;유영갑
    • The Magazine of the IEIE
    • /
    • v.23 no.11
    • /
    • pp.89-100
    • /
    • 1996
  • A new stage-sliced pipiline structure is presented to design a high speed real time Global Positional Systems(GPS) applications. The CORDIC algorothm was revised to generate a pipeline structure, which will be used to produce a large amount of trigonometric computations rapidly. A stage-sliced approach was introduced to adjust the number of interative processes, and thereby to control the precision of computation results. Both the computation and the control circuits of the proposed architecture are included in a pipeline stage, which are intergrated into a stage slice. The circuit was prototyped using six FPGA chips : one is used for glue logics and five of the chips are used for pipeline slice implementation. A single FPGA chip comprising 7 pipeline stages provides one pipeline slice. To compensate and inter-slice time delay, dummy cycles are introduced in inter-slice signal exchanges.

  • PDF

An optimum design of on-bottom stability of offshore pipelines on soft clay

  • Yu, Su Young;Choi, Han Suk;Lee, Seung Keon;Do, Chang Ho;Kim, Do Kyun
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.5 no.4
    • /
    • pp.598-613
    • /
    • 2013
  • This paper deals with the dynamic effect of pipeline installation and embedment for the on-bottom stability design of offshore pipelines on soft clay. On-bottom stability analysis of offshore pipelines on soft clay by DNV-RP-F109 (DNV, 2010) results in very unreasonable pipe embedment and concrete coating thickness. Thus, a new procedure of the on-bottom stability analysis was established considering dynamic effects of pipeline installation and pipe-soil interaction at touchdown point (TDP). This analysis procedure is composed of three steps: global pipeline installation analysis, local analysis at TDP, modified on-bottom stability analysis using DNV-RP-F109. Data obtained from the dynamic pipeline installation analysis were utilized for the finite element analysis (FEA) of the pipeline embedment using the non-linear soil property. From the analysis results of the proposed procedure, an optimum design of on-bottom stability of offshore pipeline on soft clay can be achieved. This procedure and result will be useful to assess the on-bottom stability analysis of offshore pipelines on soft clay. The analysis results were justified by an offshore field inspection.

Trend and Review of Corrosion Resistant Alloy (CRA) for Offshore Pipeline Engineering (내식합금 (CRA) 동향 및 해양 파이프라인 설계 적용에 대한 고찰)

  • Yu, Su-Young;Choi, Han-Suk;Lee, Seung-Keon;Kim, Do-Kyun
    • Journal of Ocean Engineering and Technology
    • /
    • v.28 no.1
    • /
    • pp.85-92
    • /
    • 2014
  • Offshore fields are increasingly important for the development of offshore resources due to the growing energy needs. However, an offshore field for oil and gas production has difficult development conditions, e.g., high temperature, high pressure, sweet/sour compositions of fluids, etc. Corrosion is one of the biggest issues for offshore pipeline engineering. In this study, a Corrosion Resistant Alloy (CRA) pipe for corrosion prevention was investigated through its global demand and trends, and three types of CRA pipelines were introduced with detailed explanations. The usefulness of CRA was also evaluated in comparison to a carbon steel pipeline in terms of the structural strength, cost, and other factors. Offshore pipeline engineering, including mechanical design and verification of the results through an installation analysis based on numerical software, was performed for the carbon steel type and solid CRA type. The results obtained from this study will be useful data for CRA pipeline designers and researchers.

A Universal Analysis Pipeline for Hybrid Capture-Based Targeted Sequencing Data with Unique Molecular Indexes

  • Kim, Min-Jung;Kim, Si-Cho;Kim, Young-Joon
    • Genomics & Informatics
    • /
    • v.16 no.4
    • /
    • pp.29.1-29.5
    • /
    • 2018
  • Hybrid capture-based targeted sequencing is being used increasingly for genomic variant profiling in tumor patients. Unique molecular index (UMI) technology has recently been developed and helps to increase the accuracy of variant calling by minimizing polymerase chain reaction biases and sequencing errors. However, UMI-adopted targeted sequencing data analysis is slightly different from the methods for other types of omics data, and its pipeline for variant calling is still being optimized in various study groups for their own purposes. Due to this provincial usage of tools, our group built an analysis pipeline for global application to many studies of targeted sequencing generated with different methods. First, we generated hybrid capture-based data using genomic DNA extracted from tumor tissues of colorectal cancer patients. Sequencing libraries were prepared and pooled together, and an 8-plexed capture library was processed to the enrichment step before 150-bp paired-end sequencing with Illumina HiSeq series. For the analysis, we evaluated several published tools. We focused mainly on the compatibility of the input and output of each tool. Finally, our laboratory built an analysis pipeline specialized for UMI-adopted data. Through this pipeline, we were able to estimate even on-target rates and filtered consensus reads for more accurate variant calling. These results suggest the potential of our analysis pipeline in the precise examination of the quality and efficiency of conducted experiments.

Main Elements for the Global-Local Connectivity of Regional Industrial Clusters (지역산업 클러스터의 세계적-지방적 연결성을 위한 주요 요소들)

  • Park, Yong-Gyu;Jung, Sung-Hoon
    • Journal of the Economic Geographical Society of Korea
    • /
    • v.15 no.4
    • /
    • pp.642-659
    • /
    • 2012
  • The main aim of this article is to examine theoretical issues on the 'global-local connectivity' of regional industrial cluster and regional innovation system which have been presented since the 2000s in terms of three different aspects. Firstly, the concept of 'geographical proximity' is discussed within the context of its importance for the regional industrial development by considering relationships of cluster, local buzz and global pipeline. Secondly, concepts on knowledge gatekeeper and temporary cluster are explored with respect to their role of a mediator in forming or transforming global-local connectivity. Finally, policy implications of the global-local connection are presented. Authors arguments are as follows; firstly, in order to improve regional industrial cluster on the basis of geographical proximity, relational proximity which is beyond different spatial scales has to be secured. It means that geographical convenience and inconvenience are required simultaneously for regional industrial development. Secondly, A base of the global-local connectivity is socal capital and embeddedness. Therefore, it needs to understand that relational proximity is embedded into different culture and habit at different spatial scales. Finally, within the context of the global-local connectivity, in order to overcome spatial hierarchy by the division of labor of firms, it needs to consider the complex system which is composed of vertical and horizontal hierarchy by the spatial division of labor by firms, openness and closeness of clusters, and the scope of policies' inclusion and exclusion by central and local governments.

  • PDF

Effect of Geometry Variation on Plastic Collapse of Marine Pipeline (해저배관의 소성붕괴에 대한 기하학적 형상변화의 효과)

  • Baek, Jong-Hyun;Kim, Woo-Sik
    • Journal of the Korean Institute of Gas
    • /
    • v.14 no.4
    • /
    • pp.45-50
    • /
    • 2010
  • The marine pipelines laid in deep waters were evaluated to verify the resistance on the plastic collapse to heavy ambient external pressure due to hydrostatic pressure. In this study, the plastic collapse behavior of the marine pipe subjected to hydrostatic pressure was evaluated with the ovality and ratio of diameter to thickness in FE analyses. A parametric study was shown that the internal pressure increased the plastic collapse depth by increasing of the resistance to the plastic collapse. It was also shown that the collapse depth of the pipeline having a local ovality was deeper than that of the pipeline having a global ovality. Finally, the plastic collapse depth decreased when either the ratio of diameter to thickness or the ovality increased.