• 제목/요약/키워드: global optimization

검색결과 1,118건 처리시간 0.03초

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • 제11권3호
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target

  • Sun, Chunya;Song, Baowei;Wang, Peng;Wang, Xinjing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • 제9권6호
    • /
    • pp.693-704
    • /
    • 2017
  • Blended-Wing-Body Underwater Glider (BWBUG), which has excellent hydrodynamic performance, is a new kind of underwater glider in recent years. In the shape optimization of BWBUG, the lift to drag ratio is often used as the optimization target. However this results in lose of internal space. In this paper, the energy reserve is defined as the direct proportional function of the internal space of BWBUG. A motion model, which relates gliding range to steady gliding motion parameters as well as energy consumption, is established by analyzing the steady-state gliding motion. The maximum gliding range is used as the optimization target instead of the lift to drag ratio to optimizing the shape of BWBUG. The result of optimization shows that the maximum gliding range of initial design is increased by 32.1% though an Efficient Global Optimization (EGO) process.

가상 탄성력을 이용한 자율이동로봇 경로생성 방법 (A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force)

  • 권용관
    • 한국전자통신학회논문지
    • /
    • 제8권1호
    • /
    • pp.149-157
    • /
    • 2013
  • 본 논문에서는 그리드 기반의 맵에서 자율이동로봇의 경로생성방법 및 가상 탄성력을 이용한 경로최적화 방법을 다룬다. 경로계획의 목적은 로봇이 주어진 환경에서 효율적으로 목표점을 향해 이동할 수 있도록 정보 생성하는 것이다. 그리드 기반의 경로계획기법으로 AStar 알고리즘이 대표적인 방법이며 본 논문에서는 AStar 알고리즘에 의해 작성된 경로를 가상 탄성력 알고리즘을 이용하여 경로를 최적화하는 알고리즘을 제안하고 있으며 그 결과를 비교한다. 가상 탄성력은 생성된 경로를 더 짧고 부드럽게 생성해주는 장점을 가지고 있으며 그리드 기반의 경로를 최적화 하는데 매우 유리하다.

풀림모사 기법을 이용한 NC 터릿 작업에서의 공구경로 최적화 (Tool Path Optimization for NC Turret Operation Using Simulated Annealing)

  • 조경호;이건우
    • 대한기계학회논문집
    • /
    • 제17권5호
    • /
    • pp.1183-1192
    • /
    • 1993
  • 본 연구에서는 다음과 같은 두가지 관점에서 공구경로 최적화를 위한 기존 방 법의 문제점을 검토하고 이의 개선 방안을 제시하였다. 첫째, 기존의 공구경로 산출 방법에서는 고려되지 않는 공구대의 공구 장착 현황(turret configuration)이 최적화 과정에서 고려되어야 한다. 둘째로, 제작과 관련한 구속조건(manufacturing con- straints)이 최적화 과정에 직접 반영되어야 한다.

연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬 (Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems)

  • 권영두;권순범;구남서;진승보
    • 대한기계학회논문집A
    • /
    • 제26권2호
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

다목적 유전알고리즘을 이용한 익형의 전역최적설계 (Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm)

  • 이주희;이상환;박경우
    • 대한기계학회논문집B
    • /
    • 제29권10호
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법 (A Multi-path Routing Mechanism with Local Optimization for Load Balancing in the Tactical Backbone Network)

  • 김용신;김영한
    • 정보과학회 논문지
    • /
    • 제41권12호
    • /
    • pp.1145-1151
    • /
    • 2014
  • 본 논문에서는 전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법을 제안하였다. 제안된 기법은 라우팅 메트릭을 전역 메트릭과 지역 메트릭으로 구분하여 관리한다. 전역 메트릭은 라우팅 프로토콜을 통해 다른 라우터들에게 전파되며 루프 방지가 보장되는 다중 경로 구성에 사용되고, 지역 메트릭은 링크 사용율을 반영하여 링크 과부하 발생시 우회 경로를 탐색하는 용도로 활용되며 각 라우터 내에서만 관리된다. 모의 실험을 통해 다중 경로 지역 최적화 기법 적용시 사용자 트래픽이 효과적으로 가용 링크들을 통해 분산되는 것을 확인하였다.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • 제7권1호
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

분류시스템을 이용한 다항식기반 반응표면 근사화 모델링 (Development of Polynomial Based Response Surface Approximations Using Classifier Systems)

  • 이종수
    • 한국CDE학회논문집
    • /
    • 제5권2호
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

FPGA 상에서 OpenCL을 이용한 병렬 문자열 매칭 구현과 최적화 방향 (Parallel String Matching and Optimization Using OpenCL on FPGA)

  • 윤진명;최강일;김현진
    • 전기학회논문지
    • /
    • 제66권1호
    • /
    • pp.100-106
    • /
    • 2017
  • In this paper, we propose a parallel optimization method of Aho-Corasick (AC) algorithm and Parallel Failureless Aho-Corasick (PFAC) algorithm using Open Computing Language (OpenCL) on Field Programmable Gate Array (FPGA). The low throughput of string matching engine causes the performance degradation of network process. Recently, many researchers have studied the string matching engine using parallel computing. FPGA's vendors offer a parallel computing platform using OpenCL. In this paper, we apply the AC and PFAC algorithm on DE1-SoC board with Cyclone V FPGA, where the optimization that considers FPGA architecture is performed. Experiments are performed considering global id, local id, local memory, and loop unrolling optimizations using PFAC algorithm. The performance improvement using loop unrolling is 129 times greater than AC algorithm that not adopt loop unrolling. The performance improvements using loop unrolling are 1.1, 0.2, and 1.5 times greater than those using global id, local id, and local memory optimizations mentioned above.