• Title/Summary/Keyword: global optimization

Search Result 1,118, Processing Time 0.028 seconds

Design optimization of a hollow shaft through MATLAB and simulation using ANSYS

  • Mercy, J. Rejula;Stephen, S. Elizabeth Amudhini;Edna, K. Rebecca Jebaseeli
    • Coupled systems mechanics
    • /
    • v.11 no.3
    • /
    • pp.259-266
    • /
    • 2022
  • Non-Traditional Optimization methods are successfully used in solving many engineering problems. Shaft is one of important element of machines and it is used to transmit power from a machine which produces power to a machine which absorbs power. In this paper, ten non-traditional optimization methods that are ALO, GWO, DA, FPA, FA, WOA, CSO, PSO, BA and GSA are used to find minimum weight of hollow shaft to get global optimal solution. The problem has two design variables and two inequality constraints. The comparative results show that the Particle Swarm Optimization outperforms other methods and the results are validated using ANSYS.

Shape optimization of blended-wing-body underwater glider by using gliding range as the optimization target

  • Sun, Chunya;Song, Baowei;Wang, Peng;Wang, Xinjing
    • International Journal of Naval Architecture and Ocean Engineering
    • /
    • v.9 no.6
    • /
    • pp.693-704
    • /
    • 2017
  • Blended-Wing-Body Underwater Glider (BWBUG), which has excellent hydrodynamic performance, is a new kind of underwater glider in recent years. In the shape optimization of BWBUG, the lift to drag ratio is often used as the optimization target. However this results in lose of internal space. In this paper, the energy reserve is defined as the direct proportional function of the internal space of BWBUG. A motion model, which relates gliding range to steady gliding motion parameters as well as energy consumption, is established by analyzing the steady-state gliding motion. The maximum gliding range is used as the optimization target instead of the lift to drag ratio to optimizing the shape of BWBUG. The result of optimization shows that the maximum gliding range of initial design is increased by 32.1% though an Efficient Global Optimization (EGO) process.

A Path Generation Method for a Autonomous Mobile Robot based on a Virtual Elastic Force (가상 탄성력을 이용한 자율이동로봇 경로생성 방법)

  • Kwon, Young-Kwan
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.8 no.1
    • /
    • pp.149-157
    • /
    • 2013
  • This paper describes a global path planning method and path optimization algorithm for autonomous mobile robot based on the virtual elastic force in a grid map environment. A goal of a path planning is information for a robot to go its goal point from start point by a effective way. The AStar algorithm is a well-known method for a grid based path planning. This paper suggest a path optimization method by a virtual elastic force and compare the algorithm with a orignal AStar method. The virtual elastic force makes a shorter and smoother path. It is a profitable algorithm to optimize a path in a grid environment.

Tool Path Optimization for NC Turret Operation Using Simulated Annealing (풀림모사 기법을 이용한 NC 터릿 작업에서의 공구경로 최적화)

  • 조경호;이건우
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.17 no.5
    • /
    • pp.1183-1192
    • /
    • 1993
  • Since the punching time is strongly related to the productivity in sheet metal stamping, there have been a lot of efforts to obtain the optimal tool path. However, most of the conventional efforts have the basic limitations to provide the global optimal solution because of the inherent difficulties of the NP hard combinatorial optimization problem. The existing methods search the optimal tool path with limiting tool changes to the minimal number, which proves not to be a global optimal solution. In this work, the turret rotation time is also considered in addition to the bed translation time of the NCT machine, and the total punching time is minimized by the simulated annealing algorithm. Some manufacturing constraints in punching sequences such as punching priority constraint and punching accuracy constraint are incorporated automatically in optimization, while several user-interactions to edit the final tool path are usually required in commercial systems.

Convergence Enhanced Successive Zooming Genetic Algorithm far Continuous Optimization Problems (연속 최적화 문제에 대한 수렴성이 개선된 순차적 주밍 유전자 알고리듬)

  • Gwon, Yeong-Du;Gwon, Sun-Beom;Gu, Nam-Seo;Jin, Seung-Bo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.26 no.2
    • /
    • pp.406-414
    • /
    • 2002
  • A new approach, referred to as a successive zooming genetic algorithm (SZGA), is Proposed for identifying a global solution for continuous optimization problems. In order to improve the local fine-tuning capability of GA, we introduced a new method whereby the search space is zoomed around the design point with the best fitness per 100 generation. Furthermore, the reliability of the optimized solution is determined based on the theory of probability. To demonstrate the superiority of the proposed algorithm, a simple genetic algorithm, micro genetic algorithm, and the proposed algorithm were tested as regards for the minimization of a multiminima function as well as simple functions. The results confirmed that the proposed SZGA significantly improved the ability of the algorithm to identify a precise global minimum. As an example of structural optimization, the SZGA was applied to the optimal location of support points for weight minimization in the radial gate of a dam structure. The proposed algorithm identified a more exact optimum value than the standard genetic algorithms.

Global Shape Optimization of Airfoil Using Multi-objective Genetic Algorithm (다목적 유전알고리즘을 이용한 익형의 전역최적설계)

  • Lee, Ju-Hee;Lee, Sang-Hwan;Park, Kyoung-Woo
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.29 no.10 s.241
    • /
    • pp.1163-1171
    • /
    • 2005
  • The shape optimization of an airfoil has been performed for an incompressible viscous flow. In this study, Pareto frontier sets, which are global and non-dominated solutions, can be obtained without various weighting factors by using the multi-objective genetic algorithm An NACA0012 airfoil is considered as a baseline model, and the profile of the airfoil is parameterized and rebuilt with four Bezier curves. Two curves, front leading to maximum thickness, are composed of five control points and the rest, from maximum thickness to tailing edge, are composed of four control points. There are eighteen design variables and two objective functions such as the lift and drag coefficients. A generation is made up of forty-five individuals. After fifteenth evolutions, the Pareto individuals of twenty can be achieved. One Pareto, which is the best of the . reduction of the drag furce, improves its drag to $13\%$ and lift-drag ratio to $2\%$. Another Pareto, however, which is focused on increasing the lift force, can improve its lift force to $61\%$, while sustaining its drag force, compared to those of the baseline model.

A Multi-path Routing Mechanism with Local Optimization for Load Balancing in the Tactical Backbone Network (전술 백본망에서 부하 분산을 위한 다중 경로 지역 최적화 기법)

  • Kim, Yongsin;Kim, Younghan
    • Journal of KIISE
    • /
    • v.41 no.12
    • /
    • pp.1145-1151
    • /
    • 2014
  • In this paper, we propose MPLO(Multi-Path routing with Local Optimization) for load balancing in the tactical backbone network. The MPLO manages global metric and local metric separately. The global metric is propagated to other routers via a routing protocol and is used for configuring loop-free multi-path. The local metric reflecting link utilization is used to find an alternate path when congestion occurs. We verified MPLO could effectively distribute user traffic among available routers by simulation.

Bicriteria optimal design of open cross sections of cold-formed thin-walled beams

  • Ostwald, M.;Magnucki, K.;Rodak, M.
    • Steel and Composite Structures
    • /
    • v.7 no.1
    • /
    • pp.53-70
    • /
    • 2007
  • This paper presents a analysis of the problem of optimal design of the beams with two I-type cross section shapes. These types of beams are simply supported and subject to pure bending. The strength and stability conditions were formulated and analytically solved in the form of mathematical equations. Both global and selected types of local stability forms were taken into account. The optimization problem was defined as bicriteria. The cross section area of the beam is the first objective function, while the deflection of the beam is the second. The geometric parameters of cross section were selected as the design variables. The set of constraints includes global and local stability conditions, the strength condition, and technological and constructional requirements in the form of geometric relations. The optimization problem was formulated and solved with the help of the Pareto concept of optimality. During the numerical calculations a set of optimal compromise solutions was generated. The numerical procedures include discrete and continuous sets of the design variables. Results of numerical analysis are presented in the form of tables, cross section outlines and diagrams. Results are discussed at the end of the work. These results may be useful for designers in optimal designing of thin-walled beams, increasing information required in the decision-making procedure.

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

Parallel String Matching and Optimization Using OpenCL on FPGA (FPGA 상에서 OpenCL을 이용한 병렬 문자열 매칭 구현과 최적화 방향)

  • Yoon, Jin Myung;Choi, Kang-Il;Kim, Hyun Jin
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.66 no.1
    • /
    • pp.100-106
    • /
    • 2017
  • In this paper, we propose a parallel optimization method of Aho-Corasick (AC) algorithm and Parallel Failureless Aho-Corasick (PFAC) algorithm using Open Computing Language (OpenCL) on Field Programmable Gate Array (FPGA). The low throughput of string matching engine causes the performance degradation of network process. Recently, many researchers have studied the string matching engine using parallel computing. FPGA's vendors offer a parallel computing platform using OpenCL. In this paper, we apply the AC and PFAC algorithm on DE1-SoC board with Cyclone V FPGA, where the optimization that considers FPGA architecture is performed. Experiments are performed considering global id, local id, local memory, and loop unrolling optimizations using PFAC algorithm. The performance improvement using loop unrolling is 129 times greater than AC algorithm that not adopt loop unrolling. The performance improvements using loop unrolling are 1.1, 0.2, and 1.5 times greater than those using global id, local id, and local memory optimizations mentioned above.