• Title/Summary/Keyword: global multi-object tracking

Search Result 10, Processing Time 0.019 seconds

Viewpoint Invariant Person Re-Identification for Global Multi-Object Tracking with Non-Overlapping Cameras

  • Gwak, Jeonghwan;Park, Geunpyo;Jeon, Moongu
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.11 no.4
    • /
    • pp.2075-2092
    • /
    • 2017
  • Person re-identification is to match pedestrians observed from non-overlapping camera views. It has important applications in video surveillance such as person retrieval, person tracking, and activity analysis. However, it is a very challenging problem due to illumination, pose and viewpoint variations between non-overlapping camera views. In this work, we propose a viewpoint invariant method for matching pedestrian images using orientation of pedestrian. First, the proposed method divides a pedestrian image into patches and assigns angle to a patch using the orientation of the pedestrian under the assumption that a person body has the cylindrical shape. The difference between angles are then used to compute the similarity between patches. We applied the proposed method to real-time global multi-object tracking across multiple disjoint cameras with non-overlapping field of views. Re-identification algorithm makes global trajectories by connecting local trajectories obtained by different local trackers. The effectiveness of the viewpoint invariant method for person re-identification was validated on the VIPeR dataset. In addition, we demonstrated the effectiveness of the proposed approach for the inter-camera multiple object tracking on the MCT dataset with ground truth data for local tracking.

Asynchronous Sensor Fusion using Multi-rate Kalman Filter (다중주기 칼만 필터를 이용한 비동기 센서 융합)

  • Son, Young Seop;Kim, Wonhee;Lee, Seung-Hi;Chung, Chung Choo
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.63 no.11
    • /
    • pp.1551-1558
    • /
    • 2014
  • We propose a multi-rate sensor fusion of vision and radar using Kalman filter to solve problems of asynchronized and multi-rate sampling periods in object vehicle tracking. A model based prediction of object vehicles is performed with a decentralized multi-rate Kalman filter for each sensor (vision and radar sensors.) To obtain the improvement in the performance of position prediction, different weighting is applied to each sensor's predicted object position from the multi-rate Kalman filter. The proposed method can provide estimated position of the object vehicles at every sampling time of ECU. The Mahalanobis distance is used to make correspondence among the measured and predicted objects. Through the experimental results, we validate that the post-processed fusion data give us improved tracking performance. The proposed method obtained two times improvement in the object tracking performance compared to single sensor method (camera or radar sensor) in the view point of roots mean square error.

Fusion of Local and Global Detectors for PHD Filter-Based Multi-Object Tracking (검출기 융합에 기반을 둔 확률가정밀도 (PHD) 필터를 적용한 다중 객체 추적 방법)

  • Yoon, Ju Hong;Hwang, Youngbae;Choi, Byeongho;Yoon, Kuk-Jin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.22 no.9
    • /
    • pp.773-777
    • /
    • 2016
  • In this paper, a novel multi-object tracking method to track an unknown number of objects is proposed. To handle multiple object states and uncertain observations efficiently, a probability hypothesis density (PHD) filter is adopted and modified. The PHD filter is capable of reducing false positives, managing object appearances and disappearances, and estimating the multiple object trajectories in a unified framework. Although the PHD filter is robust in cluttered environments, it is vulnerable to false negatives. For this reason, we propose to exploit local observations in an RFS of the observation model. Each local observation is generated by using an online trained object detector. The main purpose of the local observation is to deal with false negatives in the PHD filtering procedure. The experimental results demonstrated that the proposed method robustly tracked multiple objects under practical situations.

A Task Scheduling Strategy in a Multi-core Processor for Visual Object Tracking Systems (시각물체 추적 시스템을 위한 멀티코어 프로세서 기반 태스크 스케줄링 방법)

  • Lee, Minchae;Jang, Chulhoon;Sunwoo, Myoungho
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.24 no.2
    • /
    • pp.127-136
    • /
    • 2016
  • The camera based object detection systems should satisfy the recognition performance as well as real-time constraints. Particularly, in safety-critical systems such as Autonomous Emergency Braking (AEB), the real-time constraints significantly affects the system performance. Recently, multi-core processors and system-on-chip technologies are widely used to accelerate the object detection algorithm by distributing computational loads. However, due to the advanced hardware, the complexity of system architecture is increased even though additional hardwares improve the real-time performance. The increased complexity also cause difficulty in migration of existing algorithms and development of new algorithms. In this paper, to improve real-time performance and design complexity, a task scheduling strategy is proposed for visual object tracking systems. The real-time performance of the vision algorithm is increased by applying pipelining to task scheduling in a multi-core processor. Finally, the proposed task scheduling algorithm is applied to crosswalk detection and tracking system to prove the effectiveness of the proposed strategy.

A Study on Multi-Object Tracking Method using Color Clustering in ISpace (컬러 클러스터링 기법을 이용한 공간지능화의 다중이동물체 추척 기법)

  • Jin, Tae-Seok;Kim, Hyun-Deok
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.11 no.11
    • /
    • pp.2179-2184
    • /
    • 2007
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human following by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper described appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

Position Improvement of a Mobile Robot by Real Time Tracking of Multiple Moving Objects (실시간 다중이동물체 추적에 의한 이동로봇의 위치개선)

  • Jin, Tae-Seok;Lee, Min-Jung;Tack, Han-Ho;Lee, In-Yong;Lee, Joon-Tark
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.18 no.2
    • /
    • pp.187-192
    • /
    • 2008
  • The Intelligent Space(ISpace) provides challenging research fields for surveillance, human-computer interfacing, networked camera conferencing, industrial monitoring or service and training applications. ISpace is the space where many intelligent devices, such as computers and sensors, are distributed. According to the cooperation of many intelligent devices, the environment, it is very important that the system knows the location information to offer the useful services. In order to achieve these goals, we present a method for representing, tracking and human Jollowing by fusing distributed multiple vision systems in ISpace, with application to pedestrian tracking in a crowd. This paper describes appearance based unknown object tracking with the distributed vision system in intelligent space. First, we discuss how object color information is obtained and how the color appearance based model is constructed from this data. Then, we discuss the global color model based on the local color information. The process of learning within global model and the experimental results are also presented.

A Mechanism of Finding QoS Satisfied Multi-Path in Wireless Sensor Networks

  • Kang, Yong-Hyeog
    • Journal of the Korea Society of Computer and Information
    • /
    • v.22 no.2
    • /
    • pp.37-44
    • /
    • 2017
  • Wireless sensor networks are composed of many wireless sensor nodes that are sensing the environments. These networks have many constraints that are resource constraints, wireless communication, self-construction, etc. But they have many applications that are monitoring environment, tracking the object, etc. In this paper, a mechanism of finding QoS Satisfied multi-path is proposed in wireless sensor networks. In order to satisfy the QoS requirement, the proposed mechanism extends the AODV protocol to find multiple paths from a source node to a destination node by using the additional AODV message types that are proposed. This mechanism will be used to support many QoS applications such as minimum delay time, the better reliability and the better throughput by using the QoS satisfied multi-path. Overheads of the proposed mechanism are evaluated using simulation, and it is showed that QoS satisfied multiple paths are found with a little more overhead than the AODV mechanism.

Obtaining Object by Using Optimal Threshold for Saliency Map Thresholding (Saliency Map을 이용한 최적 임계값 기반의 객체 추출)

  • Hai, Nguyen Cao Truong;Kim, Do-Yeon;Park, Hyuk-Ro
    • The Journal of the Korea Contents Association
    • /
    • v.11 no.6
    • /
    • pp.18-25
    • /
    • 2011
  • Salient object attracts more and more attention from researchers due to its important role in many fields of multimedia processing like tracking, segmentation, adaptive compression, and content-base image retrieval. Usually, a saliency map is binarized into black and white map, which is considered as the binary mask of the salient object in the image. Still, the threshold is heuristically chosen or parametrically controlled. This paper suggests using the global optimal threshold to perform saliency map thresholding. This work also considers the usage of multi-level optimal thresholds and the local adaptive thresholds in the experiments. These experimental results show that using global optimal threshold method is better than parametric controlled or local adaptive threshold method.

Robust AAM-based Face Tracking with Occlusion Using SIFT Features (SIFT 특징을 이용하여 중첩상황에 강인한 AAM 기반 얼굴 추적)

  • Eom, Sung-Eun;Jang, Jun-Su
    • The KIPS Transactions:PartB
    • /
    • v.17B no.5
    • /
    • pp.355-362
    • /
    • 2010
  • Face tracking is to estimate the motion of a non-rigid face together with a rigid head in 3D, and plays important roles in higher levels such as face/facial expression/emotion recognition. In this paper, we propose an AAM-based face tracking algorithm. AAM has been widely used to segment and track deformable objects, but there are still many difficulties. Particularly, it often tends to diverge or converge into local minima when a target object is self-occluded, partially or completely occluded. To address this problem, we utilize the scale invariant feature transform (SIFT). SIFT is an effective method for self and partial occlusion because it is able to find correspondence between feature points under partial loss. And it enables an AAM to continue to track without re-initialization in complete occlusions thanks to the good performance of global matching. We also register and use the SIFT features extracted from multi-view face images during tracking to effectively track a face across large pose changes. Our proposed algorithm is validated by comparing other algorithms under the above 3 kinds of occlusions.

Scaling-Translation Parameter Estimation using Genetic Hough Transform for Background Compensation

  • Nguyen, Thuy Tuong;Pham, Xuan Dai;Jeon, Jae-Wook
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.5 no.8
    • /
    • pp.1423-1443
    • /
    • 2011
  • Background compensation plays an important role in detecting and isolating object motion in visual tracking. Here, we propose a Genetic Hough Transform, which combines the Hough Transform and Genetic Algorithm, as a method for eliminating background motion. Our method can handle cases in which the background may contain only a few, if any, feature points. These points can be used to estimate the motion between two successive frames. In addition to dealing with featureless backgrounds, our method can successfully handle motion blur. Experimental comparisons of the results obtained using the proposed method with other methods show that the proposed approach yields a satisfactory estimate of background motion.