• Title/Summary/Keyword: global damage

Search Result 678, Processing Time 0.035 seconds

Performance-based and damage assessment of SFRP retrofitted multi-storey timber buildings

  • Vahedian, Abbas;Mahini, Seyed Saeed;Glencross-Grant, Rex
    • Structural Monitoring and Maintenance
    • /
    • v.2 no.3
    • /
    • pp.269-282
    • /
    • 2015
  • Civil structures should be designed with the lowest cost and longest lifetime possible and without service failure. The efficient and sustainable use of materials in building design and construction has always been at the forefront for civil engineers and environmentalists. Timber is one of the best contenders for these purposes particularly in terms of aesthetics; fire protection; strength-to-weight ratio; acoustic properties and seismic resistance. In recent years, timber has been used in commercial and taller buildings due to these significant advantages. It should be noted that, since the launch of the modern building standards and codes, a number of different structural systems have been developed to stabilise steel or concrete multistorey buildings, however, structural analysis of high-rise and multi-storey timber frame buildings subjected to lateral loads has not yet been fully understood. Additionally, timber degradation can occur as a result of biological decay of the elements and overloading that can result in structural damage. In such structures, the deficient members and joints require strengthening in order to satisfy new code requirements; determine acceptable level of safety; and avoid brittle failure following earthquake actions. This paper investigates performance assessment and damage assessment of older multi-storey timber buildings. One approach is to retrofit the beams in order to increase the ductility of the frame. Experimental studies indicate that Sprayed Fibre Reinforced Polymer (SFRP) repairing/retrofitting not only updates the integrity of the joint, but also increases its strength; stiffness; and ductility in such a way that the joint remains elastic. Non-linear finite element analysis ('pushover') is carried out to study the behaviour of the structure subjected to simulated gravity and lateral loads. A new global index is re-assessed for damage assessment of the plain and SFRP-retrofitted frames using capacity curves obtained from pushover analysis. This study shows that the proposed method is suitable for structural damage assessment of aged timber buildings. Also SFRP retrofitting can potentially improve the performance and load carrying capacity of the structure.

A new multi-stage SPSO algorithm for vibration-based structural damage detection

  • Sanjideh, Bahador Adel;Hamzehkolaei, Azadeh Ghadimi;Hosseinzadeh, Ali Zare;Amiri, Gholamreza Ghodrati
    • Structural Engineering and Mechanics
    • /
    • v.84 no.4
    • /
    • pp.489-502
    • /
    • 2022
  • This paper is aimed at developing an optimization-based Finite Element model updating approach for structural damage identification and quantification. A modal flexibility-based error function is introduced, which uses modal assurance criterion to formulate the updating problem as an optimization problem. Because of the inexplicit input/output relationship between the candidate solutions and the error function's output, a robust and efficient optimization algorithm should be employed to evaluate the solution domain and find the global extremum with high speed and accuracy. This paper proposes a new multi-stage Selective Particle Swarm Optimization (SPSO) algorithm to solve the optimization problem. The proposed multi-stage strategy not only fixes the premature convergence of the original Particle Swarm Optimization (PSO) algorithm, but also increases the speed of the search stage and reduces the corresponding computational costs, without changing or adding extra terms to the algorithm's formulation. Solving the introduced objective function with the proposed multi-stage SPSO leads to a smart feedback-wise and self-adjusting damage detection method, which can effectively assess the health of the structural systems. The performance and precision of the proposed method are verified and benchmarked against the original PSO and some of its most popular variants, including SPSO, DPSO, APSO, and MSPSO. For this purpose, two numerical examples of complex civil engineering structures under different damage patterns are studied. Comparative studies are also carried out to evaluate the performance of the proposed method in the presence of measurement errors. Moreover, the robustness and accuracy of the method are validated by assessing the health of a six-story shear-type building structure tested on a shake table. The obtained results introduced the proposed method as an effective and robust damage detection method even if the first few vibration modes are utilized to form the objective function.

Enhanced antidiabetic efficacy and safety of compound K/β-cyclodextrin inclusion complex in zebrafish

  • Nam, Youn Hee;Le, Hoa Thi;Rodriguez, Isabel;Kim, Eun Young;Kim, Keonwoo;Jeong, Seo Yule;Woo, Sang Ho;Lee, Yeong Ro;Castaneda, Rodrigo;Hong, Jineui;Ji, Min Gun;Kim, Ung-Jin;Hong, Bin Na;Kim, Tae Woo;Kang, Tong Ho
    • Journal of Ginseng Research
    • /
    • v.41 no.1
    • /
    • pp.103-112
    • /
    • 2017
  • Background: 20(S)-Protopanaxadiol 20-O-D-glucopyranoside, also called compound K (CK), exerts antidiabetic effects that are mediated by insulin secretion through adenosine triphosphate (ATP)-sensitive potassium ($K_{ATP}$) channels in pancreatic ${\beta}$-cells. However, the antidiabetic effects of CK may be limited because of its low bioavailability. Methods: In this study, we aimed to enhance the antidiabetic activity and lower the toxicity of CK by including it with ${\beta}$-cyclodextrin (CD) (CD-CK), and to determine whether the CD-CK compound enhanced pancreatic islet recovery, compared to CK alone, in an alloxan-induced diabetic zebrafish model. Furthermore, we confirmed the toxicity of CD-CK relative to CK alone by morphological changes, mitochondrial damage, and TdT-UTP nick end labeling (TUNEL) assays, and determined the ratio between the toxic and therapeutic dose for both compounds to verify the relative safety of CK and CD-CK. Results: The CD-CK conjugate ($EC_{50}=2.158{\mu}M$) enhanced the recovery of pancreatic islets, compared to CK alone ($EC_{50}=7.221{\mu}M$), as assessed in alloxan-induced diabetic zebrafish larvae. In addition, CD-CK ($LC_{50} =20.68{\mu}M$) was less toxic than CK alone ($LC_{50}=14.24{\mu}M$). The therapeutic index of CK and CD-CK was 1.98 and 9.58, respectively. Conclusion: The CD-CK inclusion complex enhanced the recovery of damaged pancreatic islets in diabetic zebrafish. The CD-CK inclusion complex has potential as an effective antidiabetic efficacy with lower toxicity.

New Approach to Air Quality Management (대기오염관리의 새로운 접근방법)

  • 윤명조
    • Journal of environmental and Sanitary engineering
    • /
    • v.8 no.2
    • /
    • pp.25-48
    • /
    • 1993
  • International concern over the environmental pollution is ever increasing, and diversified countermeasures must be devised in Korea also. Global trend, damages, problems and countermeasures with respect to issues mentioned in the Rio Declaration, such as prevention of ozone layer destruction, reduction of migratory atmospheric pollution between neighboring countries, and prevention of global greenhouse effect, were discussed in this report. Conclusion of the report is summarized as follows : A. Measurement, Planning and Monitoring (1) Development and implementation of a global network for measurement and monitoring from the global aspects such factors as related to acid rain(Pioneer substances, pH, sulfate, nitrate), effect of global temperature(Air temperature, $CO_2$, $CH_4$, CFC, $N_2O$) and destruction of ozone layer($CFC_S$). (2) Establishment of network system via satellite monitoring movement of regional air mass, damage on the ozone layer and ground temperature distribution. B. Elucidation of Present State (1) Improvement and development of devices for carbon circulation capable of accurately forecasting input and output of carbon. (2) Developmental research on chemical reactions of greenhouse gas in the air. (3) Improvement and development of global circulation model(GCM) C. Impact Assessment Impact assessment on ecosystem, human body, agriculture, floodgate, land use, coastal ecology, industries, etc. D. Preventive Measures and Technology Development (1) Development and consumption of new energy (2) Development of new technology for removal of pioneer substances (3) Development of substitute matter for $CFC_S$ (4) Improvement of agriculture and forestry means to prevent the destruction of ozone layer and the greenhouse effect of the globe (5) Improvement of housing to prevent the destruction of ozone layer and the greenhouse effect of the globe (6) Development of new technology for probing underground water (7) Preservation of forest (8) Biomass 5. Policy Development (1) Development of strategy model (2) Development of long term forecast model (3) Development of penalty charge effect and expense evaluation methods (4) Feasibility study on regulations By establishing the above mentioned measures for environmentally sound and sustainable development to establish the right to live for humankind and to preserve the one and only earth.

  • PDF

A basic study for explosion pressure prediction of hydrogen fuel vehicle hydrogen tanks in underground parking lot (지하주차장 수소연료차 수소탱크 폭발 압력 예측을 위한 기초 연구)

  • Lee, Ho-Hyung;Kim, Hyo-Gyu;Yoo, Ji-Oh;Lee, Hu-Yeong;Kwon, Oh-Seung
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.23 no.6
    • /
    • pp.605-612
    • /
    • 2021
  • Amid growing global damage due to abnormal weather caused by global warming, the introduction of eco-friendly cars is accelerating to reduce greenhouse gas emissions from internal combustion engines. Accordingly, many studies are being conducted in each country to prepare for the explosion of hydrogen fuel in semi-closed spaces such as tunnels and underground parking lots to ensure the safety of hydrogen-electric vehicles. As a result of predicting the explosion pressure of the hydrogen tank using the equivalent TNT model, it was found to be about 1.12 times and 2.30 times higher at a height of 1.5 meters, respectively, based on the case of 52 liters of hydrogen capacity. A review of the impact on the human body and buildings by converting the predicted maximum explosive pressure into the amount of impact predicted that all predicted values would result in lung damage or severe partial destruction. The predicted degree of damage was applied only by converting the amount of impact caused by the explosion, and considering the additional damage caused by the explosion, it is believed that the actual damage will increase further and safety and disaster prevention measures should be taken.

Development for the function of Wind wave Damage Estimation at the Western Coastal Zone based on Disaster Statistics (재해통계기반 서해 연안지역의 풍랑피해예측함수 개발)

  • Choo, Tai Ho;Kwak, Kil Sin;Ahn, Si Hyung;Yang, Da Un;Son, Jong Keun
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.2
    • /
    • pp.14-22
    • /
    • 2017
  • The frequency and scale of natural disasters due to the abnormal climate phenomena caused by global warming have being increasing all over the world. Various natural disasters, such as typhoons, earthquakes, floods, heavy rain, drought, sweltering heat, wind waves, tsunamis and so on, can cause damage to human life. Especially, the damage caused by natural disasters such as the Earthquake of Japan, hurricane Katrina in the United States, typhoon Maemi and so on, have been enormous. At this stage, it is difficult to estimate the scale of damage due to (future) natural disasters and cope with them. However, if we could predict the scale of damage at the disaster response level, the damage could be reduced by responding to them promptly. In the present study, therefore, among the many types of natural disaster, we developed a function to estimate the damage due to wind waves caused by sea winds and waves. We collected the damage records from the Disaster Report ('91~'14) published by the Ministry of Public Safety and Security about wind waves and typhoons in the western coastal zone and, in order to reflect the inflation rate, we converted the amount of damage each year into the equivalent amount in 2014. Finally, the meteorological data, such as the wave height, wind speed, tide level, wave direction, wave period and so on, were collected from the KMA (Korea Meteorological Administration) and KHOA (Korea Hydrographic and Oceanographic Agency)'s web sites, for the periods when wind wave and typhoon damage occurred. After that, the function used to estimate the wind wave damage was developed by reflecting the regional characteristics for the 9 areas of the western coastal zone.

Damage Analysis of Meteorological Disasters for Each District Considering the Characteristics of a District (지자체별 특성을 고려한 자연재해에 따른 피해유형 분석)

  • Jun, Hwan-Don;Park, Moo-Jong;Kim, Guen-Young
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • v.8 no.2
    • /
    • pp.75-82
    • /
    • 2008
  • Heavy rains and typhoons are the most critical meteorological disaster occurred in the Korean peninsular. Due to the global warming, the magnitude of heavy rains and typhoons is becoming heavier resulting in more damage annually. Therefore, it is required to establish a mitigation plan to reduce the damage from meteorological disasters. To do so, in general, it is better to establish a mitigation plan for each district considering the characteristics of a district than a single mitigation plan for the entire districts without considering the characteristics of an individual district. In this study, we provide fundamental data for establishing a mitigation plan from analysis considering the frequency and damage in monetary value by heavy rain and typhoon with the geological and social characteristics of districts. The annual damage reports published by the National Emergency Management Agency, dated from 1994 to 2003, are used for the analysis. The districts are classified into six categories by the geological and social characteristics. Also, the frequency and damage in monetary value are assessed for each district. Based on them, the damage degree by heavy rain and typhoon from 1st to 4th is assigned to each district. The assigned damage degree is, then, analyzed with geological and social characteristics of each district to show the status of damage by meteorological disasters on the district.

A design procedure of dissipative braces for seismic upgrading structures

  • Bergami, A.V.;Nuti, C.
    • Earthquakes and Structures
    • /
    • v.4 no.1
    • /
    • pp.85-108
    • /
    • 2013
  • The research presented in this paper deals with the seismic protection of existing frame structures by means of passive energy dissipation. A displacement-based procedure to design dissipative bracings for the seismic protection of frame structures is proposed and some applications are discussed. The procedure is based on the displacement based design using the capacity spectrum method, no dynamic non linear analyses are needed. Two performance objective have been considered developing the procedure: protect the structure against structural damage or collapse and avoid non-structural damage as well as excessive base shear. The compliance is obtained dimensioning dissipative braces to limit global displacements and interstorey drifts. Reference is made to BRB braces, but the procedure can easily be extended to any typology of dissipative brace. The procedure has been validated through a comparison with nonlinear dynamic response of two 2D r.c. frames, one bare and one infilled. Finally a real application, on an existing 3D building where dissipative braces available on market are used, is discussed.

Collaborative Effect of CuZnSOD and Human AP Endonuclease against Oxidative Stress

  • Kim Young Gon
    • Proceedings of the Microbiological Society of Korea Conference
    • /
    • 2004.05a
    • /
    • pp.47-50
    • /
    • 2004
  • The defenses against free radical damage include specialized repair enzymes that correct oxidative damages in DNA, and detoxification systems such as superoxide dismutases. These defenses may be coordinated genetically as global responses. We hypothesized that the expression of the SOD and the DNA repair genes would inhibit DNA damage under oxidative stress. Therefore, the protection of E. coli mutants deficient in SOD and DNA repair genes $(sod^-\;xth^-\;and\;nfo^-)$ was demonstrated by transforming the mutant strain with a plasmid pYK9 which encoded Photobacterium leiognathi CuZnSOD and human AP endonuclease. The results show that survival rates were increased in $sod^+\;xth^-\;nfo^+$ cells compared to $sod^-\;xth^-\;ap^+,\;sod^-\;xth^-\;ap^-,\;and\;sod^+\;xth^-\;ap^-$ cells under oxidative stress generated from 0.1 mM Paraquat or 3 mM $H_2O_2$. The data suggested that, at least, SOD and DNA repair enzymes may have collaborate protection and repair of the damaged DNA. Additionally, both enzymes are required for protection against free radicals.

  • PDF

Monitoring of tall slender structures by GPS measurements

  • Chmielewski, Tadeusz;Breuer, Peter;Gorski, Piotr;Konopka, Eduard
    • Wind and Structures
    • /
    • v.12 no.5
    • /
    • pp.401-412
    • /
    • 2009
  • A method is applied for the estimation of structural damage of tall slender structures using natural frequency and displacements measurements by GPS. The relationship between the variation in the global stiffness matrix (or in the stiffness of each finite element) and the change in the natural frequencies of the structure is given. In engineering practice the number of frequencies which can be derived by GPS measurement of long-period structures will be equal to one, two or three first natural frequencies. This allows us in initial studies to detect damage with frequency changes based on forward methods in which the measured frequencies are compared with the predicted analytical data. This idea, of health monitoring from possible changes to natural frequencies, or from a statement of excessive displacements is applied to the Stuttgart TV Tower.