• 제목/요약/키워드: global behavior

검색결과 1,239건 처리시간 0.027초

Effective mechanical properties of micro/nano-scale porous materials considering surface effects

  • Jeong, Joonho;Cho, Maenghyo;Choi, Jinbok
    • Interaction and multiscale mechanics
    • /
    • 제4권2호
    • /
    • pp.107-122
    • /
    • 2011
  • Mechanical behavior in nano-sized structures differs from those in macro sized structures due to surface effect. As the ratio of surface to volume increases, surface effect is not negligible and causes size-dependent mechanical behavior. In order to identify this size effect, atomistic simulations are required; however, it has many limitations because too much computational resource and time are needed. To overcome the restrictions of the atomistic simulations and graft the well-established continuum theories, the continuum model considering surface effect, which is based on the bridging technique between atomistic and continuum simulations, is introduced. Because it reflects the size effect, it is possible to carry out a variety of analysis which is intractable in the atomistic simulations. As a part of the application examples, the homogenization method is applied to micro/nano thin films with porosity and the homogenized elastic coefficients of the nano scale thickness porous films are computed in this paper.

Dynamical Behavior of a Third-Order Difference Equation with Arbitrary Powers

  • Gumus, Mehmet;Abo-Zeid, Raafat;Ocalan, Ozkan
    • Kyungpook Mathematical Journal
    • /
    • 제57권2호
    • /
    • pp.251-263
    • /
    • 2017
  • The aim of this paper is to investigate the dynamical behavior of the difference equation $$x_{n+1}={\frac{{\alpha}x_n}{{\beta}+{\gamma}x^p_{n-1}x^q_{n-2}}},\;n=0,1,{\ldots}$$, where the parameters ${\alpha}$, ${\beta}$, ${\gamma}$, p, q are non-negative numbers and the initial values $x_{-2}$, $x_{-1}$, $x_0$ are positive numbers. Also, some numerical examples are given to verify our theoretical results.

Impact Energy Absorption Mechanism of Largely Deformable Composites with Different Reinforcing Structures

  • Kang, Tae-Jin;Kim, Cheol
    • Fibers and Polymers
    • /
    • 제1권1호
    • /
    • pp.45-54
    • /
    • 2000
  • Impact behaviors of the large deformable composites of Kevlar fiber reinforced composites of different preform structures have been investigated. An analytic tool was developed to characterize the impact behavior of the Kevlar composites. The image analysis technique, and deply technique were employed to develop energy balance equation under impact loading. An energy method was employed to establish the impact energy absorption mechanism of Kevlar multiaxial warp knitted composites. The total impact energy was classified into four categories including delamination energy, membrane energy, bending energy and rebounding energy under low velocity impact. Membrane and bending energy were calculated from the image analysis of the deformed shape of impacted specimen and delamination energy was calculated using the deplying technique. Also, the impact behavior of Kevlar composites under high velocity impact of full penetration of the composite specimen was studied. The energy absorption mechanisms under high velocity impact were modelled and the absorbed energy was classified into global deformation energy, shear-out energy, deformation energy and fiber breakage energy. The total energy obtained from the model corresponded reasonably well with the experimental results.

  • PDF

Behavior, Design, and Modeling of Structural Walls and Coupling Beams - Lessons from Recent Laboratory Tests and Earthquakes

  • Wallace, John W.
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권1호
    • /
    • pp.3-18
    • /
    • 2012
  • Observed wall damage in recent earthquakes in Chile and New Zealand, where modern building codes exist, exceeded expectations. In these earthquakes, structural wall damage included boundary crushing, reinforcement fracture, and global wall buckling. Recent laboratory tests also have demonstrated inadequate performance in some cases, indicating a need to review code provisions, identify shortcomings and make necessary revisions. Current modeling approaches used for slender structural walls adequately capture nonlinear flexural behavior; however, strength loss due to buckling of reinforcement and nonlinear and shear-flexure interaction are not adequately captured. Additional research is needed to address these issues. Recent tests of reinforced concrete coupling beams indicate that diagonally-reinforced beams detailed according to ACI 318-$11^1$ can sustain plastic rotations of about 6% prior to significant strength loss and that relatively simple modeling approaches in commercially available computer programs are capable of capturing the observed responses. Tests of conventionally-reinforced beams indicate less energy dissipation capacity and strength loss at approximately 4% rotation.

3D 직교 직물 복합재료 평판의 미시구조를 고려한 손상 거동 연구 (A Study of damage behaviors of 3D orthogonal woven composite plates under Low velocity Impact)

  • 지국현;양정식;김승조
    • 한국복합재료학회:학술대회논문집
    • /
    • 한국복합재료학회 2005년도 추계학술발표대회 논문집
    • /
    • pp.53-56
    • /
    • 2005
  • In this study, the material characterization and the dynamic behavior of 3D orthogonal woven composite materials has been studied under transverse central low-velocity impact condition by means of the micromechanical model using finite elements. To build up the micromechanical model considering tow spacing and waviness, an accurate unit structure is stacked in x-y-z direction repeatedly. First, the mechanical properties of 3D orthogonal woven composites arc obtained by means of virtual experiment using full scale Finite Element Analysis based on the DNS concepts, and the computed elastic properties arc validated by comparison to available experimental results. Second, using the implementation of this validated micromechanical model, 3D transient finite-clement analysis is performed considering contact and impact, and the impact behavior of 3D orthogonal woven composite is investigated. A comparison study with the homogenized model will be carried out in terms of global and local behaviors.

  • PDF

Dissolution Behavior and Hydrate Effect on $CO_{2}$ Ocean Sequestration

  • Kim Nam Jin;Kim Chong Bo
    • Journal of Mechanical Science and Technology
    • /
    • 제19권5호
    • /
    • pp.1216-1225
    • /
    • 2005
  • $CO_{2}$ ocean sequestration is one of the promising options to reduce $CO_{2}$ concentration in the atmosphere because the ocean has vast capacity for $CO_{2}$ absorption. Therefore, in the present investigation, calculations for solubility and dissolution behavior of liquid $CO_{2}$ droplets released at 1000 m and 1500 m deep in the ocean from a moving ship and a fixed pipeline have been carried out in order to estimate the $CO_{2}$ dissolution characteristics in the ocean. The results show liquid $CO_{2}$ becomes bubble at around 500 m in depth, and the solubility of seawater is about $5{\%}$ less than of pure water. Also, it is shown that the injection of liquid from a moving ship is a more effective method for dissolution than from a fixed pipeline, and the presence of hydrate on liquid $CO_{2}$ acts as a resistant layer in dissolving liquid $CO_{2}$.

Behaviors of excited states argon atom density in ICP discharge

  • 박민;유신재;김정형;성대진;신용현;장홍영
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2011년도 제40회 동계학술대회 초록집
    • /
    • pp.203-203
    • /
    • 2011
  • Metastable statates, resonant states in 4s level and excited states in 4p level were investigated with a simple global model and examined by the LIF experiments. Metastable states exhibit an anomalous behavior with the plasma density, on the other hands, other states show monotonous increasing behaviors. It turns out that the metastable state can have such an anomalous behavior due to its special characteristic, electric dipole radiation forbidden. It is expected to resolve the ambiguity of previously reported metastable density behaviors and provide further understanding.

  • PDF

전달 행렬법과 유한요소법을 이용한 중공 크랭크축의 강제 진동 해석 (Forced Vibration Analysis of a Hollow Crankshaft by using Transfer Matrix Method and Finite Element Method)

  • 김관주;최진욱
    • 한국자동차공학회논문집
    • /
    • 제5권6호
    • /
    • pp.44-52
    • /
    • 1997
  • As part of the effort to reduce the weight of powertrain, a hollow crankshaft has been designed. The mass reduction of the crankshaft changes the dynamic properties of the crankshaft such as moment of inertia, and torsional, bending stiffness. The purpose of this paper is to compare the dynamic behavior of the hollow crankshaft with that of the original, solid crankshaft. Global dynamic behavior of the crankshaft is analyzed bgy the transfer matrix method(TMM). The crankshaft has been modeled by 38 lumped mass and stiffness elements. The dynamic patameters of each lumped element are provided by Finite Element Method(FEM). The responses of the crankshaft from TMM are fed back as loading conditions to the Finite Element model to obtain dynamic stresses for critical areas of the crankshaft.

  • PDF

A Biologically Inspired Intelligent PID Controller Tuning for AVR Systems

  • Kim Dong-Hwa;Cho Jae-Hoon
    • International Journal of Control, Automation, and Systems
    • /
    • 제4권5호
    • /
    • pp.624-636
    • /
    • 2006
  • This paper proposes a hybrid approach involving Genetic Algorithm (GA) and Bacterial Foraging (BF) for tuning the PID controller of an AVR. Recently the social foraging behavior of E. coli bacteria has been used to solve optimization problems. We first illustrate the proposed method using four test functions and the performance of the algorithm is studied with an emphasis on mutation, crossover, variation of step sizes, chemotactic steps, and the life time of the bacteria. Further, the proposed algorithm is used for tuning the PID controller of an AVR. Simulation results are very encouraging and this approach provides us a novel hybrid model based on foraging behavior with a possible new connection between evolutionary forces in social foraging and distributed non-gradient optimization algorithm design for global optimization over noisy surfaces.

Generation of Control Signals in High-Level Synthesis from SDL Specification

  • Kwak, Sang-Hoon;Kim, Eui-Seok;Lee, Dong-IK;Baek, Young-Seok;Park, In-Hak
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2000년도 ITC-CSCC -1
    • /
    • pp.410-413
    • /
    • 2000
  • This paper suggests a methodology in which control signals for high-level synthesis are generated from SDL specification. SDL is based on EFSM(Extended Finite State Machine) model. Data path and control part are partitioned into representing data operations in the from of scheduled data flow graph and process behavior of an SDL code in forms of an abstract FSM. Resource allocation is performed based on the suggested architecture model and local control signals to drive allocated functional blocks are incorporated into an abstract FSM extracted from an SDL process specification. Data path and global controller acquired through suggested methodology are combined into structural VHDL representation and correctness of behavior for final circuit is verified through waveform simulation.

  • PDF