• Title/Summary/Keyword: global approximation

Search Result 146, Processing Time 0.028 seconds

Estimating global solar radiation using wavelet and data driven techniques

  • Kim, Sungwon;Seo, Youngmin
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2015.05a
    • /
    • pp.475-478
    • /
    • 2015
  • The objective of this study is to apply a hybrid model for estimating solar radiation and investigate their accuracy. A hybrid model is wavelet-based support vector machines (WSVMs). Wavelet decomposition is employed to decompose the solar radiation time series into approximation and detail components. These decomposed time series are then used as inputs of support vector machines (SVMs) modules in the WSVMs model. Results obtained indicate that WSVMs can successfully be used for the estimation of daily global solar radiation at Champaign and Springfield stations in Illinois.

  • PDF

GLOBAL EXISTENCE AND STABILITY OF A KORTEWEG-DE VRIES EQUATION IN NONCYLINDRICAL DOMAIN

  • Ha, Tae Gab
    • Communications of the Korean Mathematical Society
    • /
    • v.34 no.2
    • /
    • pp.565-572
    • /
    • 2019
  • In this paper, we consider a Korteweg-de Vries equation in noncylindrical domain. This work is devoted to prove existence and uniqueness of global solutions employing Faedo-Galerkin's approximation and transformation of the noncylindrical domain with moving boundary into cylindrical one. Moreover, we estimate the exponential decay of solutions in the asymptotically cylindrical domain.

Two Layer Multiquadric-Biharmonic Artificial Neural Network for Area Quasigeoid Surface Approximation with GPS-Levelling Data

  • Deng, Xingsheng;Wang, Xinzhou
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • v.2
    • /
    • pp.101-106
    • /
    • 2006
  • The geoidal undulations are needed for determining the orthometric heights from the Global Positioning System GPS-derived ellipsoidal heights. There are several methods for geoidal undulation determination. The paper presents a method employing a simple architecture Two Layer Multiquadric-Biharmonic Artificial Neural Network (TLMB-ANN) to approximate an area of 4200 square kilometres quasigeoid surface with GPS-levelling data. Hardy’s Multiquadric-Biharmonic functions is used as the hidden layer neurons’ activation function and Levenberg-Marquardt algorithm is used to train the artificial neural network. In numerical examples five surfaces were compared: the gravimetric geometry hybrid quasigeoid, Support Vector Machine (SVM) model, Hybrid Fuzzy Neural Network (HFNN) model, Traditional Three Layer Artificial Neural Network (ANN) with tanh activation function and TLMB-ANN surface approximation. The effectiveness of TLMB-ANN surface approximation depends on the number of control points. If the number of well-distributed control points is sufficiently large, the results are similar with those obtained by gravity and geometry hybrid method. Importantly, TLMB-ANN surface approximation model possesses good extrapolation performance with high precision.

  • PDF

A Study on the Robust Design Using Kriging Surrogate Models (크리깅 근사모델을 이용한 강건설계에 관한 연구)

  • Lee, Kwon-Hee;Cho, Yong-Chul;Park, Gyung-Jin
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.870-875
    • /
    • 2004
  • Current trend of design technologies shows engineers to objectify or automate the given decision-making process. The numerical optimization is an example of such technologies. However, in numerical optimization, the uncertainties are uncontrollable to efficiently objectify or automate the process. To better manage these uncertainties, Taguchi method, reliability-based optimization and robust optimization are being used. To obtain the target performance with the maximum robustness is the main functional requirement of a mechanical system. In this research, the robust design strategy is developed based on the DACE and the global optimization approaches. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the system. The robustness is determined by the DACE model to reduce the real function calculations. The simulated annealing algorithm of global optimization methods is adopted to determine the global robust design of a surrogated model. The mathematical problems and the MEMS design problem are investigated to show the validity of the proposed method.

  • PDF

Development of Polynomial Based Response Surface Approximations Using Classifier Systems (분류시스템을 이용한 다항식기반 반응표면 근사화 모델링)

  • 이종수
    • Korean Journal of Computational Design and Engineering
    • /
    • v.5 no.2
    • /
    • pp.127-135
    • /
    • 2000
  • Emergent computing paradigms such as genetic algorithms have found increased use in problems in engineering design. These computational tools have been shown to be applicable in the solution of generically difficult design optimization problems characterized by nonconvexities in the design space and the presence of discrete and integer design variables. Another aspect of these computational paradigms that have been lumped under the bread subject category of soft computing, is the domain of artificial intelligence, knowledge-based expert system, and machine learning. The paper explores a machine learning paradigm referred to as teaming classifier systems to construct the high-quality global function approximations between the design variables and a response function for subsequent use in design optimization. A classifier system is a machine teaming system which learns syntactically simple string rules, called classifiers for guiding the system's performance in an arbitrary environment. The capability of a learning classifier system facilitates the adaptive selection of the optimal number of training data according to the noise and multimodality in the design space of interest. The present study used the polynomial based response surface as global function approximation tools and showed its effectiveness in the improvement on the approximation performance.

  • PDF

Control of pH Neutralization Process using Simulation Based Dynamic Programming (ICCAS 2003)

  • Kim, Dong-Kyu;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2003.10a
    • /
    • pp.2617-2622
    • /
    • 2003
  • The pH neutralization process has long been taken as a representative benchmark problem of nonlinear chemical process control due to its nonlinearity and time-varying nature. For general nonlinear processes, it is difficult to control with a linear model-based control method so nonlinear controls must be considered. Among the numerous approaches suggested, the most rigorous approach is the dynamic optimization. However, as the size of the problem grows, the dynamic programming approach is suffered from the curse of dimensionality. In order to avoid this problem, the Neuro-Dynamic Programming (NDP) approach was proposed by Bertsekas and Tsitsiklis (1996). The NDP approach is to utilize all the data collected to generate an approximation of optimal cost-to-go function which was used to find the optimal input movement in real time control. The approximation could be any type of function such as polynomials, neural networks and etc. In this study, an algorithm using NDP approach was applied to a pH neutralization process to investigate the feasibility of the NDP algorithm and to deepen the understanding of the basic characteristics of this algorithm. As the global approximator, the neural network which requires training and k-nearest neighbor method which requires querying instead of training are investigated. The global approximator requires optimal control strategy. If the optimal control strategy is not available, suboptimal control strategy can be used even though the laborious Bellman iterations are necessary. For pH neutralization process it is rather easy to devise an optimal control strategy. Thus, we used an optimal control strategy and did not perform the Bellman iteration. Also, the effects of constraints on control moves are studied. From the simulations, the NDP method outperforms the conventional PID control.

  • PDF

Finite Element Analysis and Local a Posteriori Error Estimates for Problems of Flow through Porous Media (다공매체를 통과하는 유동문제의 유한요소해석과 부분해석후 오차계산)

  • Lee, Choon-Yeol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.21 no.5
    • /
    • pp.850-858
    • /
    • 1997
  • A new a posteriori error estimator is introduced and applied to variational inequalities occurring in problems of flow through porous media. In order to construct element-wise a posteriori error estimates the global error is localized by a special mixed formulation in which continuity conditions at interfaces are treated as constraints. This approach leads to error indicators which provide rigorous upper bounds of the element errors. A discussion of a compatibility condition for the well-posedness of the local error analysis problem is given. Two numerical examples are solved to check the compatibility of the local problems and convergence of the effectivity index both in a local and a global sense with respect to local refinements.

Surrogate-Based Improvement on Cuckoo Search for Global Constrained Optimization (근사 최적화를 활용한 뻐꾸기 탐색법의 성능 개선)

  • Lee, Se Jung
    • Korean Journal of Computational Design and Engineering
    • /
    • v.19 no.3
    • /
    • pp.245-252
    • /
    • 2014
  • Engineering applications of global optimization techniques are recently abundant in the literature and it may be caused by both new methodologies arising and faster computers coming out. Many of the optimization techniques are based on natural or biological phenomena. This study put focus on enhancing the performace of Cuckoo Search (CS) among them since it has the least number of parameters to tune. The proposed enhancement can be achieved by applying surrogate-based optimization at every cycle of CS, which fortifies the exploitation capability of the original method. The enhanced algorithm has been applied several engineering design problems with constraints. The proposed method shows comparable or superior performance to the original method.

A Robust Optimization Using the Statistics Based on Kriging Metamodel

  • Lee Kwon-Hee;Kang Dong-Heon
    • Journal of Mechanical Science and Technology
    • /
    • v.20 no.8
    • /
    • pp.1169-1182
    • /
    • 2006
  • Robust design technology has been applied to versatile engineering problems to ensure consistency in product performance. Since 1980s, the concept of robust design has been introduced to numerical optimization field, which is called the robust optimization. The robustness in the robust optimization is determined by a measure of insensitiveness with respect to the variation of a response. However, there are significant difficulties associated with the calculation of variations represented as its mean and variance. To overcome the current limitation, this research presents an implementation of the approximate statistical moment method based on kriging metamodel. Two sampling methods are simultaneously utilized to obtain the sequential surrogate model of a response. The statistics such as mean and variance are obtained based on the reliable kriging model and the second-order statistical approximation method. Then, the simulated annealing algorithm of global optimization methods is adopted to find the global robust optimum. The mathematical problem and the two-bar design problem are investigated to show the validity of the proposed method.

Multi-view Clustering by Spectral Structure Fusion and Novel Low-rank Approximation

  • Long, Yin;Liu, Xiaobo;Murphy, Simon
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.16 no.3
    • /
    • pp.813-829
    • /
    • 2022
  • In multi-view subspace clustering, how to integrate the complementary information between perspectives to construct a unified representation is a critical problem. In the existing works, the unified representation is usually constructed in the original data space. However, when the data representation in each view is very diverse, the unified representation derived directly in the original data domain may lead to a huge information loss. To address this issue, different to the existing works, inspired by the latest revelation that the data across all perspectives have a very similar or close spectral block structure, we try to construct the unified representation in the spectral embedding domain. In this way, the complementary information across all perspectives can be fused into a unified representation with little information loss, since the spectral block structure from all views shares high consistency. In addition, to capture the global structure of data on each view with high accuracy and robustness both, we propose a novel low-rank approximation via the tight lower bound on the rank function. Finally, experimental results prove that, the proposed method has the effectiveness and robustness at the same time, compared with the state-of-art approaches.