• Title/Summary/Keyword: glass-like carbon

Search Result 52, Processing Time 0.02 seconds

Characteristics of Diamond-like Carbon Thin Films (다이아몬드성 탄소 박막의 특성)

  • Kang, Sung Soo;Lee, Won Jin;Park, Hae Jong
    • Journal of Korean Ophthalmic Optics Society
    • /
    • v.5 no.2
    • /
    • pp.193-199
    • /
    • 2000
  • The a-C : H films have been grown on the glass substrate by PECVD method, where plasma was generated with a 60 Hz line power source. The growth rate of films is found to be dependent of the partial pressure of $C_2H_2$. This growth rate is a little higher than that in which $CH_4$ instead of $C_2H_2$ is used. The transmittance is also much higher(95%). The optical energy gap of films is in the range of 1.4~1.8eV depending on the partial pressure of $C_2H_2$. However, this energy gap, which is 1.8eV, is found to be independent of the partial pressure of $C_2H_2$ for the thick films above $2000{\AA}$. The carbonization is checked from peak intensities of D ($sp^3$) and G($sp^2$) peaks in Roman spectra. The hydronization and C-H bonding status in films can also be determined from FTIR results. Both the bonding strength of C-H and the ratio of $sp^3$ to $sp^2$ in bonding are found to be slightly dependent of partial pressure of $C_2H_2$. Judging from above results, we can conclude that the best value for partial pressure of $C_2H_2$ in growing process of thick films is about 13.8%.

  • PDF

Development of Insulation Sheet Materials and Their Sound Characterization

  • Ni, Qing-Qing;Lu, Enjie;Kurahashi, Naoya;Kurashiki, Ken;Kimura, Teruo
    • Advanced Composite Materials
    • /
    • v.17 no.1
    • /
    • pp.25-40
    • /
    • 2008
  • The research and development in soundproof materials for preventing noise have attracted great attention due to their social impact. Noise insulation materials are especially important in the field of soundproofing. Since the insulation ability of most materials follows a mass rule, the heavy weight materials like concrete, lead and steel board are mainly used in the current noise insulation materials. To overcome some weak points in these materials, fiber reinforced composite materials with lightweight and other high performance characteristics are now being used. In this paper, innovative insulation sheet materials with carbon and/or glass fabrics and nano-silica hybrid PU resin are developed. The parameters related to sound performance, such as materials and fabric texture in base fabric, hybrid method of resin, size of silica particle and so on, are investigated. At the same time, the wave analysis code (PZFlex) is used to simulate some of experimental results. As a result, it is found that both bundle density and fabric texture in the base fabrics play an important role on the soundproof performance. Compared with the effect of base fabrics, the transmission loss in sheet materials increased more than 10 dB even though the thickness of the sample was only about 0.7 mm. The results show different values of transmission loss factor when the diameters of silica particles in coating materials changed. It is understood that the effect of the soundproof performance is different due to the change of hybrid method and the size of silica particles. Fillers occupying appropriate positions and with optimum size may achieve a better effect in soundproof performance. The effect of the particle content on the soundproof performance is confirmed, but there is a limit for the addition of the fillers. The optimization of silica content for the improvement of the sound insulation effect is important. It is observed that nano-particles will have better effect on the high soundproof performance. The sound insulation effect has been understood through a comparison between the experimental and analytical results. It is confirmed that the time-domain finite wave analysis (PZFlex) is effective for the prediction and design of soundproof performance materials. Both experimental and analytical results indicate that the developed materials have advantages in lightweight, flexibility, other mechanical properties and excellent soundproof performance.