• Title/Summary/Keyword: glass substrates

Search Result 884, Processing Time 0.026 seconds

Manufacturing Mobile Displays & Systems on Glass (

  • Nobari, Ali Reza;Mourgue, Stephane;Clube, Francis;Jorda, Mathieu;Iriguchi, Chiharu;Inoue, Satoshi;Grass, Elmar;Mayer, Herbert
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2005.07a
    • /
    • pp.676-678
    • /
    • 2005
  • Future Mobile displays and the emerging systems on Glass for the upcoming TFT_LCDs or Active-OLEDs based on LTPS, and the exciting c-Si critically require very-high resolution lithography. We report the methodology and latest results on the alignment, magnification control and stitching systems on a HMA500 holographic mask aligner for printing $0.5{\mu}m-resolution$ display patterns onto glass substrates of dimensions up to $500mm{\times}400mm$.

  • PDF

A Study on Wettability of Silicate Glasses on the Different Impurities in Alumina Substrates (알루미나의 순도에 따른 알루미나와 실리케이트계 유리와의 젖음성에 관한 연구)

  • 안병국
    • Journal of Welding and Joining
    • /
    • v.16 no.2
    • /
    • pp.122-128
    • /
    • 1998
  • This investigation was performed to collect fundamental informations concerning the behavior of glass solders on ceramic joining process. The wettability of glasses on two types of alumina was evaluated by sessile drop method. SiO$_2$-CaO-Al$_2$O$_3$system glasses were selected as solder glasses, and alumina that have different purities were used for substrate materials. It is indicated that contact angles of glasses on 99% purity of alumina substrate do not change as increasing time at elevated temperature, however the contact angles on the 92% purity of alumina substrate exhibit the strong time dependency. The time-dependent property on 92% alumina was due to the interlayer reactions occurred between the glass solder and impurities on the substrate.

  • PDF

Study on the Touch Screen Panel Based on the Light over Electro Phoretic Display

  • Choi, Uk-Chul;Jung, Ho-Young;Park, Cheol-Woo;Hong, Sung-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2007.08a
    • /
    • pp.706-709
    • /
    • 2007
  • Different from the LCD that have two glass substrates on the top and the bottom, EPD have an advantage that is using the bottom glass substrate and the top e-ink sheet. So, it is impossible to apply R or C type TSP that need bottom and top glass plane. We successfully implemented the TSP (Touch Screen Panel) based on the light over the EPD (Electro Phoretic Display).

  • PDF

The Effect of Thickness on Flexible, Electrical and Optical properties of Ti- ZnO films on Flexible Glass by Atomic Layer Deposition

  • Lee, U-Jae;Yun, Eun-Yeong;Gwon, Se-Hun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2016.02a
    • /
    • pp.196.1-196.1
    • /
    • 2016
  • TCO(Transparent Conducting Oxide) on flat glass is used in thin-film photovoltaic cell, flat-panel display. Nowadays, Corning(R) Willow Glass(R), known as flexible substrate, has attracted much attention due to its many advantages such as reliable roll-to-roll glass processing, high-quality flexible electronic devices, high temperature process. Also, it can be an alternative to flexible polymer substrates which have their poor stability and degradation of electrical and optical qualities. For application on willow glass, the flexibility, electrical, optical properties can be greatly influenced by the TCO thin film thickness due to the inherent characterization of thin film in nanoscale. It can be expected that while thick TCO layer causes poor transparency, its sheet resistance become low. Also, rarely reports were focusing on the influence of flexible properties by varying TCO thickness on flexible glass. Therefore, it is very important to optimize TCO thickness on flexible Willow glass. In this study, Ti-ZnO thin films, with different thickness varied from 0 nm to 50 nm, were deposited on the flexible willow glass by atomic layer deposition (ALD). The flexible, electrical and optical properties were investigated, respectively. Also, these properties of Ti-doped ZnO thin films were compared with un-doped ZnO thin film. Based on the results, when Ti-ZnO thin films thickness increased, resistivity decreased and then saturated; transmittance decreased. The Figure of Merit (FoM) and flexibility was the highest when Ti-ZnO thickness was 40nm. The flexible, electrical and optical properties of Ti-ZnO thin films were better than ZnO thin film at the same thickness.

  • PDF

Laser Sealing of Dye-Sensitized Solar Cell Panels Using V2O5 and TeO2 Contained Glass (V2O5 및 TeO2 함유 유리를 이용한 염료감응형 태양전지 패널의 레이저 봉착)

  • Cho, Sung Jin;Lee, Kyoung Ho
    • Journal of the Korean Ceramic Society
    • /
    • v.51 no.3
    • /
    • pp.170-176
    • /
    • 2014
  • Effective glass frit compositions enabled to absorb laser energy, and to seal a commercial dye-sensitized solar-cell-panel substrate were developed by using $V_2O_5$-based glasses with various amounts of $TeO_2$ substitution. The latter was intended to increase the lifetime of the solar cells. Substitution of $V_2O_5$ by $TeO_2$ provided a strong network structure for the glasses via the formation of tetrahedral pyramids in the glass, and changed the various glass properties, such as glass transition temperature ($T_g$), dilatometric softening point ($T_d$), crystallization temperature, coefficient of thermal expansion (CTE), and glass flowage without any detrimental effect on the laser absorption property of the glasses. The thermal expansion mismatch (${\Delta}{\alpha}$) between the glass frit and the substrate could be controlled within less than ${\pm}5%$ by addition of 10 wt% of ${\beta}$-eucryptite. An 810 nm diode laser was used for the sealing test. The laser sealing test revealed that the VZBT20 glass frit with 10 wt% ${\beta}$-eucryptite was successfully sealed the substrates without interfacial cracks and pores. The optimum sealing conditions were provided by a beam size of 3 mm, laser power of 40 watt, scan speed of 300 mm/s, and 200 irradiation cycles.

PDMS-based pixel-wall bonding technique for a flexible liquid crystal display (플렉서블 액정 디스플레이를 위한 PDMS 기반 pixel-wall bonding 기술)

  • Kim, Young-Hwan;Park, Hong-Gyu;Oh, Byeong-Yun;Kim, Byoung-Yong;Paek, Kyeong-Kap;Seo, Dae-Shik
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2008.04a
    • /
    • pp.42-42
    • /
    • 2008
  • Considerable attention has been focused on the applications of flexible liquid crystal (LC)-based displays because of their many potential advantages, such as portability, durability, light weight, thin packaging, flexibility, and low power consumption. To develop flexible LCDs that are capable of delivering high-quality moving images, like conventional glass-substrate LCDs, the LC device structure must have a stable alignment layer of LC molecules, concurrently support uniform cell gaps, and tightly bind two flexible substrates under external tension. However, stable LC molecular alignment has not been achieved because of the layerless LC alignment, and consequently high-quality images cannot be guaranteed. To solve these critical problems, we have proposed a PDMS pixel-wall based bonding method via the IB irradiation was developed for fasten the two substrates together strongly and maintain uniform cell gaps. The effect of the IB irradiation on PDMS with PI surface was also evaluated by side structure configuration and a result of x-ray photoelectron spectroscopic analysis of PDMS interlayer as a function of binder with substrates. large number of PDMS pixel-walls are tightly fastened to the surface of each flexible substrate and could maintain a constant cell gap between the LC molecules without using any other epoxy or polymer. To enhance the electro-optical performance of the LC device, we applied an alignment method that creates pretilt angle on the PI surface via ion beam irradiation. Using this approach, our flexible LCDs have a contrast ratio of 132:1 and a response time of about 15 ms, resulting in highly reliable electro-optical performance in the bent state, comparable to that of glass-substrate LCDs.

  • PDF

Influence of silver nanoparticles on the photovoltaic parameters of silicon solar cells

  • Dzhafarov, Tayyar D.;Pashaev, Arif M.;Tagiev, Bahadur G.;Aslanov, Shakir S.;Ragimov, Shirin H.;Aliev, Akper A.
    • Advances in nano research
    • /
    • v.3 no.3
    • /
    • pp.133-141
    • /
    • 2015
  • Influence of Ag nanoparticles on optical and photovoltaic properties of, silicon substrates, silicon solar cells and glass have been investigated. Silver nanoparticles have been fabricated by evaporation of thin Ag layers followed by the thermal annealing. The surface plasmon resonance peak was observed in the absorbance spectrum at 470 nm of glass with deposited silver nanoparticles. It is demonstrated that deposition of silver nanoparticles on silicon substrates was accompanied with a significant decrease in reflectance at the wavelength 360-1100 nm and increase of the absorption at wavelengths close to the band gap for Si substrates. We studied influence of Ag nanoparticles on photovoltaic characteristics of silicon solar cells without and with common use antireflection coating (ARC). It is shown that silver nanoparticles deposited onto the front surface of the solar cells without ARC led to increase in the photocurrent density by 39% comparing to cells without Ag nanoparticles. Contrary to this, solar cells with Ag nanoparticles deposited on front surface with ARC discovered decrease in photocurrent density. The improved performance of investigated cells was attributed to Ag-plasmonic excitations that reduce the reflectance from the silicon surface and ultimately leads to the enhanced light absorption in the cell. This study showed possibility of application of Ag nanoparticles for the improvement of the conversion efficiency of waferbased silicon solar cells instead of usual ARC.

Thermoelectric properties of $(Bi,;Sb)_2;(Te,;Se)_3$-based thin films and their applicability to temperature sensors ($(Bi,;Sb)_2;(Te,;Se)_3$계 박막의 열전 특성 및 온도 센서로의 응용)

  • 한승욱;김일호;이동희
    • Journal of the Korean Vacuum Society
    • /
    • v.6 no.1
    • /
    • pp.69-76
    • /
    • 1997
  • P-type ($Bi_{0.5}Sb_{1.5}Te_3$) and n-type ($Bi_2Te_{2.4} Se_{0.6}$) thermoelectric thin film were deposited on glass and Teflon substrates by the flash evaporation technique. The changes in thermoelectric properties, such as Seebeck coefficient, electrical conductivity, carrier concentration, carrier mobility, thermal conductivity, and figure of merit, were investigated as a function of film thickness and annealing condition. Figures of merit of the thin films annealed at 473 K for 1 hour were improved to be $1.3{\times}10^{-3}K^{-1}$ for p-type and $0.3{\times}10^{-3}K^{-1}$ for n-type, and they were almost independent of film thickness. Temperature sensors were fabricated from the thin films having the above mentioned properties. And thermo-emf, sensitivity, and time constant of the sensors were measured to evaluate their characteristics for temperature sensors. Thin film sensors deposited on Teflon substrates showed better performance than those on glass substrates, and their sensitivity and time constant were 2.91 V/W and 28.2 sec respectively for the sensor of leg width 1 mm$\times$length 16 mm.

  • PDF

Synthesis of High-quality Graphene by Inductively-coupled Plasma-enhanced Chemical Vapor Deposition

  • Lam, Van Nang;Kumar, Challa Kiran;Park, Nam-Kyu;Arepalli, Vinaya Kumar;Kim, Eui-Tae
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 2011.10a
    • /
    • pp.16.2-16.2
    • /
    • 2011
  • Graphene has attracted significant attention due to its unique characteristics and promising nanoelectronic device applications. For practical device applications, it is essential to synthesize high-quality and large-area graphene films. Graphene has been synthesized by eloborated mechanical exfoliation of highly oriented pyrolytic graphite, chemical reduction of exfoliated grahene oxide, thermal decomposition of silicon carbide, and chemical vapor deposition (CVD) on metal substrates such as Ni, Cu, Ru etc. The CVD has advantages over some of other methods in terms of mass production on large-areas substrates and it can be easily separated from the metal substrate and transferred to other desired substrates. Especially, plasma-enhanced CVD (PECVD) can be very efficient to synthesize high-quality graphene. Little information is available on the synthesis of graphene by PECVD even though PECVD has been demonstrated to be successful in synthesizing various carbon nanostructures such as carbon nanotubes and nanosheets. In this study, we synthesized graphene on $Ni/SiO_2/Si$ and Cu plate substrates with CH4 diluted in $Ar/H_2$ (10%) by using an inductively-coupled PECVD (ICPCVD). High-quality graphene was synthesized at as low as $700^{\circ}C$ with 600 W of plasma power while graphene layer was not formed without plasma. The growth rate of graphene was so fast that graphene films fully covered on substrate surface just for few seconds $CH_4$ gas supply. The transferred graphene films on glass substrates has a transmittance at 550 nm is higher 94%, indicating 1~3 monolayers of graphene were formed. FETs based on the grapheme films transferred to $Si/SiO_2$ substrates revealed a p-type. We will further discuss the synthesis of graphene and doped graphene by ICPVCD and their characteristics.

  • PDF

Synthesis of Solution-Processed Cu2ZnSnSe4 Thin Films on Transparent Conducting Oxide Glass Substrates

  • Ismail, Agus;Cho, Jin Woo;Park, Se Jin;Hwang, Yun Jeong;Min, Byoung Koun
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.7
    • /
    • pp.1985-1988
    • /
    • 2014
  • $Cu_2ZnSnSe_4$ (CZTSe) thin films were synthesized on transparent conducting oxide glass substrates via a simple, non-toxic, and low-cost process using a precursor solution paste. A three-step heating process (oxidation, sulfurization, and selenization) was employed to synthesize a CZTSe thin film as an absorber layer for use in thin-film solar cells. In particular, we focused on the effects of sulfurization conditions on CZTSe film formation. We found that sulfurization at $400^{\circ}C$ involves the formation of secondary phases such as $CuSe_2$ and $Cu_2SnSe_3$, but they gradually disappeared when the temperature was increased. The formed CZTSe thin films showed homogenous and good crystallinity with grain sizes of approximately 600 nm. A solar cell device was tentatively fabricated and showed a power conversion efficiency of 2.2% on an active area of 0.44 $cm^2$ with an open circuit voltage of 365 mV, a short current density of 20.6 $mA/cm^2$, and a fill factor of 28.7%.