• Title/Summary/Keyword: glass forming ability

Search Result 41, Processing Time 0.016 seconds

A Study on the Microstructure and Magnetic Properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 Nanocrystalline Soft Magnetic Alloys with varying P Content (Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 나노결정질 연자성 합금의 P함량에 따른 미세구조 및 자기적 특성 변화 관찰에 관한 연구)

  • Im, Hyun Ah;Bae, Kyoung-Hoon;Nam, Yeong gyun;An, Subong;Yang, Sangsun;Kim, Yong-Jin;Lee, Jung Woo;Jeong, Jae Won
    • Journal of Powder Materials
    • /
    • v.28 no.4
    • /
    • pp.293-300
    • /
    • 2021
  • We investigate the effect of phosphorous content on the microstructure and magnetic properties of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) nanocrystalline soft magnetic alloys. The simultaneous addition of Cu and P to nanocrystalline alloys reportedly decreases the nanocrystalline size significantly, to 10-20 nm. In the P-containing nanocrystalline alloy, P atoms are distributed in an amorphous residual matrix, which suppresses grain growth, increases permeability, and decreases coercivity. In this study, nanocrystalline ribbons with a composition of Fe83.2Si5.33-0.33xB10.67-0.67xPxCu0.8 (x = 1-4 at.%) are fabricated by rapid quenching melt-spinning and thermal annealing. It is demonstrated that the addition of a small amount of P to the alloy improves the glass-forming ability and increases the resistance to undesirable Fex(B,P) crystallization. Among the alloys investigated in this work, an Fe83.2Si5B10P1Cu0.8 nanocrystalline ribbon annealed at 460℃ exhibits excellent soft-magnetic properties including low coercivity, low core loss, and high saturation magnetization. The uniform nanocrystallization of the Fe83.2Si5B10P1Cu0.8 alloy is confirmed by high-resolution transmission electron microscopy analysis.