• Title/Summary/Keyword: girder bridges

Search Result 932, Processing Time 0.022 seconds

The Plan & Design for Through Plate Girder Bridge of Variable Section (변단면 하로판형교의 계획 및 설계)

  • Min, Young-Taek;Kim, Sung-Yeol;Ko, Seung-Young;Kim, Young-Sang
    • Proceedings of the KSR Conference
    • /
    • 2006.11b
    • /
    • pp.530-537
    • /
    • 2006
  • Recently, the railroad route plan is trying to minimize the damage of the local resident which is caused by railroad construction. For this reason, reducing the banking height of soil roadbed, lowering the bridge girder height of a solid intersection and a part of cross river, the through bridge type which can achieve a required span length must apply. The representative through bridges of railroad are arch bridges, truss bridges and plate girder bridges, the through plate girder bridge of variable section can apply that the span length of these bridges is about $30{\sim}50m$, namely, middle span length bridge types, and that can satisfy structural capacity and beauty of railroad at the same time. This paper introduces plan and design process of the Su-eo cheon bridge applied by a through plate girder bridge type of the Jinju-Gwangyang double track 6th construction ordered at Korea Rail network Authority in 2005.

  • PDF

Optimization of Steel Box Girder Bridges using Approximate Reanalysis Technique (재해석 기법을 이용한 강상자형교의 최적설계)

  • Min, Dae-Hong;Yoon, Woo-Hyun;Chung, Jee-Seung;Yang, Sung-Don
    • Journal of the Korean Society of Safety
    • /
    • v.26 no.4
    • /
    • pp.80-86
    • /
    • 2011
  • Structural optimization algorithm of steel box girder bridges using improved higher-order approximate reanalysis technique is proposed in this paper. The proposed approximation method is a generalization of the convex approximation method. The order of the approximate reanalysis for each function is analytically adjusted in the optimization process. This self-adjusted capability makes the approximate structural analysis values conservative enough to maintain the optimum design point of the approximate problem. The efficiency of proposed optimazation algorithm, compared with conventional algorithm, is successfully demonstrated in the steel box girder bridges. The efficiency and robustness of proposed algorithm is also demonstrated in practical steel box girder bridges.

Nonlinear Analysis of Prestressed Concrete Box Girder Bridges Using Macro Element (매크로요소를 이용한 프리스트레스트 콘크리트 박스거더 교량의 비선형 해석)

  • Oh, Byung-Hwan;Lee, Myung-Kue
    • Magazine of the Korea Concrete Institute
    • /
    • v.11 no.1
    • /
    • pp.77-87
    • /
    • 1999
  • The conventional design of prestressed concrete box girder bridges has been based on the linear elastic analyses using simplified geometric models. To overcome the restriction involved in the simplifications, a macro element for the rational analysis of prestressed concrete box girder bridges with variable cross sections is incorporated in the present analysis. Through the adoption of nonlinear material models, the behaviour of prestressed box bridges up to ultimate loading stage can be examined. The time dependent material models included in the present macro element code enable to predict the long term behaviour of prestressed concrete box girder bridges. The proposed macro element code with the nonlinear material models and time dependent routines can be efficiently used for the realistic analysis of prestressed concrete box girder bridges with arbitrary shapes.

Life Cycle Cost Analysis of SCP Composite Girder Bridge for Railroad (철도용 SCP합성거더교의 LCC 분석에 관한 연구)

  • Kim, Dae-Sung;Cho, Sun-Kyu;Kwon, Chek;Choi, Young-Min
    • Journal of the Korean Society for Railway
    • /
    • v.9 no.2 s.33
    • /
    • pp.244-249
    • /
    • 2006
  • Recently, the SCP(Steel Confined Prestressed concrete) composite girders are developed to improve the characteristic such as displacement, vibration, and heavy dead load due to influence of self weight, and inefficiency of steel section of exiting girder-type railroad bridges. It is needed to verify the economical effciency of newly developed SCP composite girder bridge compared with the conventional girder-type bridges. In this paper, LCC analysis for alternative railroad bridges Is performed and its technique based on level of risk(probability of failure) is suggested. From the results, it may be stated that SCP composite girder bridge is more economical than a conventional one.

Assessment of System Reliability and Capacity-Rating of Concrete Box-Girder High-Girder Highway Bridges (R.C 박스거더교의 체계신뢰성해석 및 안전도평가)

  • 조효남;이승재;임종권
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1993.10a
    • /
    • pp.195-200
    • /
    • 1993
  • This paper develops practical and realistic reliability models and methods for the evalusion of system reliability and system reliability-based rating of R.C box-girder bridge superstructures. The precise prediction of reserved carrying capacity of bridge as a system is extremely difficult expecially when the bridges are highly redundant and significantly deteriorated or damaged. This paper proposes a new approach for the evaluation of reserved system carrying capacity of bridges in terms of equivalent system-strength, which may be defined as a bridge system-strength corresponding to the system reliability of the bridge. This can be derived from an inverse process based on the concept of FOSM form of system reliability index. The strength limit state models for R.C box-girder bridges suggested in the paper are based on the basic bending and shear strength. and the system reliability problem of box-girder superstructure is formulated as parallel-series models obtained from the FMA(Failure Mode Approach) based on major failure mechanism or critical failure states of each girder. AFOSM and IST(Importance Sampling Technique) simulation algorithm is used for the reliability analysis of the proposed models.

  • PDF

Analysis of Dynamic Responses for Steel Box Girder and I-girder Bridges under Train Loads (강합성 상자형교 및 소수주형 I형 거더교의 철도차량에 대한 동특성 해석)

  • Choi, Dong-Ho;Na, Ho-Sung;Ahn, Gi-Chul;Kim, Ok-Yeon
    • Proceedings of the KSR Conference
    • /
    • 2011.05a
    • /
    • pp.954-959
    • /
    • 2011
  • The intensity of train load in the railway bridges is relatively large and continues to repeat. Also, the speed of vehicles is very fast. For these reasons, analyses for dynamic response under train load are necessary in the railway bridges. In other words, the dynamic characteristics of steel-composite bridges under train loads should be investigated considering effects of dynamic responses such as vibrations, repeated displacements and acceleration of bridge members. Therefore, in this study, static and dynamic analyses for the steel box girder bridges and I-girder bridges are carried out. Based on analyses results, we investigated and compared dynamic response considering the impact factors of domestic and foreign design specifications.

  • PDF

Modeling of Noncomposite Skew Plate Girder Bridges (비합성형 판형사교의 모형화)

  • Moon, Seong-Kwon
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2008.04a
    • /
    • pp.505-510
    • /
    • 2008
  • The design of noncomposite construction for skew bridges with large skew angels has been often checked because composite construction may cause large stresses in the bridge deck. In this study, the analytical model considered dynamic behaviors for noncomposite skew bridges was proposed. Using the proposed analytical model, the effects of interactions between the concrete deck and steel girders such as composite construction, and noncomposite construction on the dynamic characteristics of simply supported skew bridges were investigated. A series of parametric studies for the total 27 skew bridges was conducted with respect to parameters such as girder spacing, skew angle, and deck aspect ratio. The slip at the interfaces between the concrete deck and steel girders may bring about longer vibration periods that result in the reduced total seismic base shear.

  • PDF

Seismic Response of Multiple Span Steel Bridges in the Central and Southeastern United States (미 중부 및 동남부 지역의 다경간 교량의 지진응답)

  • Choi, Eunsoo
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2003.04a
    • /
    • pp.427-439
    • /
    • 2003
  • A previous study evaluated the seismic response of typical multi-span simply supported (MSSS) and multi-span continuous (MSC) steel-girder bridges in the central and southeastern United States. The results showed that the bridges were vulnerable to damage resulting from impact between decks, and large ductility demands on nonductile columns. Furthermore, fixed and expansion bearings were likely to fail during strong ground motion. In this paper, several retrofit measures to improve the seismic performance of typical multi-span simply supported and multi-span continuous steel girder bridges are evaluated, including the use of elastomeric bearings, lead-rubber bearings, and restrainer cables. It is determined that lead-rubber bearings are the most effective retrofit measure for reducing the seismic vulnerability of typical bridges. While isolation provided by elastomeric bearings limits the forces into the columns, the added flexibility results in pounding between decks in the MSSS steel-girder bridge. Restrainer cables, which are becoming a common retrofit measure, are only moderately effective in reducing the seismic vulnerability of MSSS and MSC steel girder bridges.

  • PDF

A Model for Reliability-Based Durability Assessment of PC BOX Girder Bridges (신뢰성에 기초한 PC박스거더교의 내구성평가 모형)

  • 조효남;이승재;이정곤
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.04a
    • /
    • pp.286-291
    • /
    • 1995
  • The deterioration of PC box girder may cause serious effect on the durability of PC structure compared to that of RC structures. In the durability assessment of PC box girder bridges, a quantitive model on crack width is considered as a measure of durability. This study suggests a durability limit state model for PC box girder bridges. This durability limit state model in formulated based on the conventional models on the cracks in concrete. And the allowable crack width is taken as an assumed value established by the design specification or provided by the maintenance authority of the structure.

  • PDF

Girder distribution factors for steel bridges subjected to permit truck or super load

  • Tabsh, Sami W.;Mitchell, Muna M.
    • Structural Engineering and Mechanics
    • /
    • v.60 no.2
    • /
    • pp.237-249
    • /
    • 2016
  • There are constraints on truck weight, axle configurations and size imposed by departments of transportation around the globe due to structural capacity limitations of highway pavements and bridges. In spite of that, freight movers demand some vehicles that surpass the maximum size and legal weight limits to use the transportation network. Oversized trucks serve the purpose of spreading the load on the bridge; thus, reducing the load effect on the superstructure. For such vehicles, often a quick structural analysis of the existing bridges along the traveled route is needed to ensure that the structural capacity is not exceeded. For a wide vehicle having wheel gage larger than the standard 1830 mm, the girder distribution factors in the design specifications cannot be directly used to estimate the live load in the supporting girders. In this study, a simple approach that is based on finite element analysis is developed by modifying the AASHTO LRFD's girder distribution factors for slab-on-steel-girder bridges to overcome this problem. The proposed factors allow for determining the oversized vehicle bending moment and shear force effect in the individual girders as a function of the gage width characteristics. Findings of the study showed that the relationship between the girder distribution factor and gage width is more nonlinear in shear than in flexure. The proposed factors yield reasonable results compared with the finite element analysis with adequate level of conservatism.