• Title/Summary/Keyword: ginsenoside20(S)-Rg3

Search Result 88, Processing Time 0.032 seconds

Preparation of a 20(R)-Ginsenoside $Rh_2$ and the 20(S) Epimer from Protopanaxadiol Saponins of Panax ginseng C.A. Meyer (인삼의 Protopanaxadiol계 사포닌으로부터 20(R)-Ginsenoside $Rh_2$ 및 20(S) 이성체의 제조)

  • 김신일;백남인;김동선;이유희;강규상;박종대
    • YAKHAK HOEJI
    • /
    • v.35 no.5
    • /
    • pp.432-437
    • /
    • 1991
  • A mixture of 20(R)- and 20(S)-ginsenoside Rg$_{3}$ was obtained under mild acidic hydrolysis from protopanaxadiol saponins, ginsenosides Rb$_{1}$, Rb$_{2}$, Rc and Rd. The product was acetylated to give the peracetates, which were further converted into 20(R)-ginsenoside Rg$_{3}$, 20(S)-ginsenoside Rg$_{3}$, 20(R)-ginsenoside Rh$_{2}$ and 20(S)-ginsenoside Rh$_{2}$ by the direct alkaline treatment depending upon two kinds of temperature conditions respectively. The structure and physicochemical properties of a prosapogenin, 20(R)-ginsenoside Rh$_{2}$, were investigated.

  • PDF

Effects of Ginsenoside Rg3 Epimers on Swine Coronary Artery Contractions

  • Kim, Jong-Hoon;Nah, Seung-Yeol
    • Journal of Ginseng Research
    • /
    • v.29 no.3
    • /
    • pp.119-125
    • /
    • 2005
  • The previous reports demonstrated that ginseng saponins, active ingredient of Panax ginseng, inhibited blood vessel contraction induced by various hormones or high $K^+$. Recently, we demonstrated that 20(R)- and 20(S)-ginsenoside $Rg_3$. regulate ion channel activities with differential manners. The aim of this study was to examine whether ginsenoside $Rg_3$ isomers also show differential effects on swine coronary artery contractionresponses induced by high $K^+$, serotonin (5-HT) or acetylcholine. Treatment of 20(S)- but not 20(R)-ginsenoside $Rg_3$ caused a concentration-dependent relaxation of coronary artery contracted by 25mM KCI. 20(S)- and 20(R)-ginsenoside $Rg_3$ induced significant relaxations of coronary artery contraction induced by 5-HT $(3{\mu}M)$ in the presence of endothelium with concentration-dependent manner and, also in the absence of endothelium only 20(S)-ginsenoside $Rg_3$ induced a strong Inhibition of coronary artery contraction induced by 5-HT in a concentration-dependent manner. 20(S)-ginsenoside $Rg_3$ caused relaxation of coronary artery in the absence and presence of endothelium. In contrast, treatment of 20(S)- and 20(R)-ginsenoside $Rg_3\;(100{\mu}M)$ did not show significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the presence of endothelium, whereas both isomers caused significant inhibition of coronary artery contraction induced by acetylcholine $(0.01\;to\;30{\mu}M)$ in the absence of endothelium in a concentration-dependent manner. These findings indicate that 20(S)-or 20(R)-ginsenoside $Rg_3$ exhibits differential relaxation eff3cts of swine coronary artery contractions caused by high $K^+$, acetylcholine, and 5-HT treatment and that this differential vasorelaxing effects of ginsenoside $Rg_3$ isomers also might be dependent on endothelium.

Analysis of Ginsenosides of White and Red Ginseng Concentrates (백삼 및 홍삼 농축액의 사포닌 분석)

  • Ko, Sung-Kwon;Lee, Chung-Ryul;Choi, Yong-Eui;Im, Byung-Ok;Sung, Jong-Hwan;Yoon, Kwang-Ro
    • Korean Journal of Food Science and Technology
    • /
    • v.35 no.3
    • /
    • pp.536-539
    • /
    • 2003
  • Commercial white and red ginseng concentrates were analysed for total ginsenoside contents, and compositions of ginsenosides $Rb_1,\;Rb_2,\;Rc,\;Re,\;Rf,\;Rg_1,\;20(S)\;Rg_3,\;20(S)\;Rh_1,\;and\;20(R)\;Rh_1$. The content of crude saponin and total ginsenosides of white ginseng concentrates (WGC) were about 2-3 times higher than those of red ginseng concentrates (RGC). HPLC showed that each ginsenoside content was higher in WGC, with those of $Rb_1,\;Rg_1,\;and\;Rb_2$ being over three times higher than that of RGC. 20(S)- and 20(R)-ginsenoside $Rg_3$, specific artifacts found only in red ginseng, were detected both in WGC and RGC by HPLC. differences in the contents of these specific ginsenosides between WGC and RGC were not significant. The contents of 20(S)-ginsenoside $Rg_1$, determined by HPLC were 0.40 and 0.53 in WGC, whereas 0.48% and 0.47%, and those of 20(R)-ginsenoside $Rg_3$, were 0.14 and 0.22% in WGC, and 0.10 and 0.11% in RGC using the methods of shibata and food Code, respectively.

20(S)-ginsenoside Rg3 inhibits glycoprotein IIb/IIIa activation in human platelets

  • Kwon, Hyuk-Woo
    • Journal of Applied Biological Chemistry
    • /
    • v.61 no.3
    • /
    • pp.257-265
    • /
    • 2018
  • The Panax ginseng Mayer is used in conventional medicine in Asia owing to its preventing effects on thrombosis, hypertension, atherosclerosis, vasorelaxation and myocardial infarction. Because platelets are crucial mediators of cardiovascular diseases, many studies have investigated its functions. The previous study showed the antiplatelet effects of crude ginseng fraction and two of its components, ginsenoside Rg3 (20S and 20R). In addition, ginsenoside Rg3-enriched fraction shows an inhibitory effect on collagen-activated rat platelets. However, the mechanism underlying this effect remains unclear. Thus, I investigated the inhibitory action of ginsenoside Rg3 (20S, G-Rg3) on the regulation of signaling molecules involved in ${\alpha}IIb/{\beta}_3$ activation. I found that G-Rg3, in a cyclic AMP dependent manner, inhibited thrombin-induced activation of human platelets and affinity of fibrinogen and fibronectin with ${\alpha}IIb/{\beta}_3$. Thus, in the present study, G-Rg3 showed an inhibitory effect on glycoprotein IIb/IIIa (${\alpha}IIb/{\beta}_3$) activation, suggesting its potential use for preventing platelet-mediated thrombotic disease.

Ginsenoside-Rb2 and 20(S)-Ginsenoside-Rg3 from Korean Red Ginseng Prevent Rotavirus Infection in Newborn Mice

  • Yang, Hui;Oh, Kwang-Hoon;Kim, Hyun Jin;Cho, Young Ho;Yoo, Yung Choon
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.3
    • /
    • pp.391-396
    • /
    • 2018
  • It is well known that Korean red ginseng has various biological activities. However, there is little knowledge about the antiviral activity of Korean red ginseng and its ginsenosides. In this study, we addressed whether oral administration of ginsenoside-Rb2 and -Rg3 is able to protect against rotavirus (RV) infection. The protective effect of ginsenosides against RV infection was examined using an in vivo experiment model in which newborn mice (10-day-old) were inoculated perorally (p.o.) with $1.5{\times}10^6$ plaque-forming units/mouse of RV strain SA11. When various dosages of ginsenoside-Rb2 (25-250 mg/kg) were administered 3days, 2 days, or 1 day before virus challenge, treatment with this ginsenoside at the dosage of 75 mg/kg 3days before virus infection most effectively reduced RV-induced diarrhea. In addition, consecutive administration of ginsenoside-Rb2 (75 mg/kg) at 3 days, 2 days, and 1 day before virus infection was more effective than single administration on day -3. The consecutive administration of ginsenoside-Rb2 also reduced virus titers in the bowels of RV-infected mice. In an experiment to compare the protective activity between ginsenoside-Rb2 and its two hydrolytic products (20(S)- and 20(R)-ginsenoside-Rg3), 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, prevented RV infection. These results suggest that ginsenoside-Rb2 and its hydrolytic product, 20(S)-ginsenoside-Rg3, are promising candidates as an antiviral agent to protect against RV infection.

Evaluation of the gastroprotective effects of 20 (S)-ginsenoside Rg3 on gastric ulcer models in mice

  • Zhang, Kai;Liu, Ying;Wang, Cuizhu;Li, Jiannan;Xiong, Lingxin;Wang, Zhenzhou;Liu, Jinping;Li, Pingya
    • Journal of Ginseng Research
    • /
    • v.43 no.4
    • /
    • pp.550-561
    • /
    • 2019
  • Background: Gastric ulcer (GU) is a common gastrointestinal disease that can be induced by many factors. Finding an effective treatment method that contains fewer side effects is important. 20 (S)-ginsenoside Rg3 is a kind of protopanaxadiol and has shown superior antiinflammatory and antioxidant effects in many studies, especially cancer studies. In this study, we examined the treatment efficacy of 20 (S)-ginsenoside Rg3 on GU. Methods: Three kinds of GU models, including an alcohol GU model, a pylorus-ligated GU model, and an acetic acid GU model, were used. Mouse endothelin-1 (ET-1) and nitric oxide (NO) levels in blood and epidermal growth factor (EGF), superoxide dismutase, and NO levels in gastric mucosa were evaluated. Hematoxylin and eosin staining of gastric mucosa and immunohistochemical staining of ET-1, inducible nitric oxide synthase (NOS2), and epidermal growth factor receptors were studied. Ulcer index (UI) scores and UI ratios were also analyzed to demonstrate the GU conditions in different groups. Furthermore, Glide XP from $Schr{\ddot{o}}dinger$ was used for molecular docking to clarify the interactions between 20 (S)-ginsenoside Rg3 and EGF and NOS2. Results: 20 (S)-ginsenoside Rg3 significantly decreased the UI scores and UI ratios in all the three GU models, and it demonstrated antiulcer effects by decreasing the ET-1 and NOS2 levels and increasing the NO, superoxide dismutase, EGF, and epidermal growth factor receptor levels. In addition, high-dose 20 (S)-ginsenoside Rg3 showed satisfactory gastric mucosa protection effects. Conclusion: 20 (S)-ginsenoside Rg3 can inhibit the formation of GU and may be a potential therapeutic agent for GU.

Ginsenoside 20(S)-Rg3 reduces KIF20A expression and promotes CDC25A proteasomal degradation in epithelial ovarian cancer

  • Rong Zhang;Lei Li;Huihui Li;Hansong Bai;Yuping Suo;Ju Cui;Yingmei Wang
    • Journal of Ginseng Research
    • /
    • v.48 no.1
    • /
    • pp.40-51
    • /
    • 2024
  • Background: Ginsenoside 20(S)-Rg3 shows promising tumor-suppressive effects in ovarian cancer via inhibiting NF-kB signaling. This study aimed to explore the downstream tumor suppressive mechanisms of ginsenoside Rg3 via this signaling pathway. Materials and methods: A systematical screening was applied to examine the expression profile of 41 kinesin family member genes in ovarian cancer. The regulatory effect of ginsenoside Rg3 on KIF20A expression was studied. In addition, we explored interacting proteins of KIF20A and their molecular regulations in ovarian cancer. RNA-seq data from The Cancer Genome Atlas (TCGA) was used for bioinformatic analysis. Epithelial ovarian cancer cell lines SKOV3 and A2780 were used as in vitro and in vivo cell models. Commercial human ovarian cancer tissue arrays were used for immunohistochemistry staining. Results: KIF20A is a biomarker of poor prognosis among the kinesin genes. It promotes ovarian cancer cell growth in vitro and in vivo. Ginsenoside Rg3 can suppress the transcription of KIF20A. GST pull-down and co-immunoprecipitation (IP) assays confirmed that KIF20A physically interacts with BTRC (β-TrCP1), a substrate recognition subunit for SCFβ-TrCP E3 ubiquitin ligase. In vitro ubiquitination and cycloheximide (CHX) chase assays showed that via interacting with BTRC, KIF20A reduces BTRC-mediated CDC25A poly-ubiquitination and enhances its stability. Ginsenoside Rg3 treatment partly abrogates KIF20A overexpression-induced CDC25A upregulation. Conclusion: This study revealed a novel anti-tumor mechanism of ginsenoside Rg3. It can inhibit KIF20A transcription and promote CDC25A proteasomal degradation in epithelial ovarian cancer.

Characterizing a full spectrum of physico-chemical properties of (20S)-and (20R)-ginsenoside Rg3 to be proposed as standard reference materials

  • Kim, Il-Woung;Sun, Won Suk;Yun, Bong-Sik;Kim, Na-Ri;Min, Dongsun;Kim, Si-Kwan
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.124-134
    • /
    • 2013
  • The authentication of the physico-chemical properties of ginsenosides reference materials as well as qualitative and quantitative batch analytical data based on validated analytical procedures is a prerequisite for certifying good manufacturing practice (GMP). Ginsenoside Rb1 and Rg1, representing protopanaxadiol and protopanaxatriol ginsenosides, respectively, are accepted as marker substances in quality control standards worldwide. However, the current analytical methods for these two compounds recommended by Korean, Chinese, European, and Japanese pharmacopoeia do not apply to red ginseng preparations, particularly the extract, because of the relatively low content of the two agents in red ginseng compared to white ginseng. In manufacturing fresh ginseng into red ginseng products, ginseng roots are exposed to a high temperature for many hours, and the naturally occurring ginsenoside Rb1 and Rg1 are converted to artifact ginsenosides such as Rg3, Rg5, Rh1, and Rh2 during the heating process. The analysis of ginsenosides in commercially available ginseng products in Korea led us to propose the inclusion of the (20S)- and (20R)-ginsenoside Rg3, including ginsenoside Rb1 and Rg1, as additional reference materials for ginseng preparations. (20S)- and (20R)-ginsenoside Rg3 were isolated by Diaion HP-20 adsorption chromatography, silica gel flash chromatography, recrystallization, and preparative HPLC. HPLC fractions corresponding to those two ginsenosides were recrystallized in appropriate solvents for the analysis of physico-chemical properties. Documentation of those isolated ginsenosides was achieved according to the method proposed by Gaedcke and Steinhoff. The ginsenosides were subjected to analyses of their general characteristics, identification, purity, content quantification, and mass balance tests. The isolated ginsenosides showed 100% purity when determined by the three HPLC systems. Also, the water content was found to be 0.534% for (20S)-Rg3 and 0.920% for (20R)-Rg3, meaning that the net mass balances for (20S)-Rg3 and (20R)-Rg3 were 99.466% and 99.080%, respectively. From these results, we could assess and propose a full spectrum of physico-chemical properties of (20S)- and (20R)-ginsenoside Rg3 as standard reference materials for GMP-based quality control.

Separation of 20(R&S) Prosapogenin Isomers of Ginsenoside-$Rg_2$ and -$Rg_3$ from Ginseng Saponins by Reversed-Phase High Performance Liquid Chromatography (인삼 사포닌에서 Ginsenoside-$Rg_2$와 -$Rg_3$의 이성질체인 20(R&S) Prosapogenin들의 역상 고속 액체 크로마토그래피에 의한 분리)

  • Jeong, Seung-Il;Kim, Cheon-Suk;Lee, Yong-Gu;Lee, Ho-Sup;Kim, Il-Kwang
    • Analytical Science and Technology
    • /
    • v.11 no.5
    • /
    • pp.404-408
    • /
    • 1998
  • Using a reversed-phase high performance liquid chromatography, the separation of 20(S)-, 20(R)-prosapogenin stereo-isomers of ginsenoside-$Rg_2$ and of ginsenoside-$Rg_3$ in ginseng saponins has been carried out with binary solvent system. The optimum conditions for the isomer separation are as following: Nova-$Pak^{(R)}C_{18}$ (Waters, $3.9{\times}150mm$) column, $CH_3CN/CH_3CN$ (100:8, v/v) binary solvent system and the flow rate was 1.7 mL/min. The stereoisomers were separated with change of the mixture ratio of the solvent system, the solvent elution by gradient program, and then detected at 203 nm of UV detector. The simultaneous separation of mixture that were the $Rg_2$, $Rg_3$ isomers was easily performed in nonpolar solvent for $Rg_2$, polar solvent for $Rg_3$ at the same optimum conditions.

  • PDF

Protective effect of ginsenoside-Rb2 from Korean red ginseng on the lethal infection of haemagglutinating virus of Japan in mice

  • Yoo, Yung Choon;Lee, Junglim;Park, Seok Rae;Nam, Ki Yeul;Cho, Young Ho;Choi, Jae Eul
    • Journal of Ginseng Research
    • /
    • v.37 no.1
    • /
    • pp.80-86
    • /
    • 2013
  • Korean red ginseng has been shown to possess a variety of biological activities. However, little is known about antiviral activity of ginsenosides of Korean red ginseng. Here, we investigated the protective effect by oral administration of various ginsenosides on the lethal infection of haemagglutinating virus of Japan (HVJ) in mice. In a lethal infection model in which almost all mice infected with HVJ died within 15 days, the mice were administered orally (per os) with 1 mg/mouse of dammarane-type (ginsenoside-Rb1, -Rb2, -Rd, -Re, and -Rg2) or oleanolic acid-type (ginsenoside-Ro) ginsenosides 3, 2, and 1 d before virus infection. Ginsenoside-Rb2 showed the highest protective activity, although other dammarane-type and oleanolic acid-type ginsenosides also induced a significant protection against HVJ. However, neither the consecutive administration with a lower dosage (300 ${\mu}g$/mouse) nor the single administration of ginsenoside-Rb2 (1 mg/mouse) was active. In comparison of the protective activity between ginsenoside-Rb2 and its two hydrolytic products [20(S)- and 20(R)-ginsenoside-Rg3], 20(S)-ginsenoside-Rg3, but not 20(R)-ginsenoside-Rg3, elicited a partial protection against HVJ. The protective effect of ginsenoside-Rb2 and 20(S)-ginsenoside-Rg3 on HVJ infection was confirmed by the reduction of virus titers in the lungs of HVJ-infected mice. These results suggest that ginsenoside-Rb2 is the most effective among ginsenosides from red ginseng to prevent the lethal infection of HVJ, so that this ginsenoside is a promising candidate as a mucosal immunoadjuvant to enhance antiviral activity.