• 제목/요약/키워드: ginsenoside Rh4

검색결과 123건 처리시간 0.034초

초고압 증숙처리가 산삼배양근의 진세노사이드 Rg3와 Rh2의 함량에 미치는 영향 (Effect of High Pressure and Steaming Extraction Processes on Ginsenosides Rg3 and Rh2 Contents of Cultured-Root in Wild Ginseng (Panax ginseng C. A. Meyer))

  • 최운용;이춘근;서용창;송치호;임혜원;이현용
    • 한국약용작물학회지
    • /
    • 제20권4호
    • /
    • pp.270-276
    • /
    • 2012
  • This study was performed to enhance contents of low molecular weight ginsenoside Rh2 and Rg3 using an ultra high pressure and steaming process in wild cultured-Root in wild ginseng. For selective increase in contents of Rg3 and Rh2 in cultured wild ginseng roots, an ultra high extraction was applied at 500MPa for 20 min which was followed by steaming process at $90^{\circ}C$ for 12 hr. It was revealed that contents of ginsenosides, Rb1, Rb2, Rc and Rd, were decreased with the complex process described above, whereas contents of ginsenoside Rh2 and Rg3 were increased up to 4.918 mg/g and 6.115 mg/g, respectively. In addition, concentration of benzo[${\alpha}$]pyrene in extracts of the cultured wild ginseng roots treated by the complex process was 0.64 ppm but it was 0.78 ppm when it was treated with the steaming process. From the results, it was strongly suggested that low molecular weight ginsenosides, Rh2 and Rg3, are converted from Rb1, Rb2, Rc, and Rd which are easily broken down by an ultra high pressure and steaming process. This results indicate that an ultra high pressure and steaming process can selectively increase in contents of Rg3 and Rh2 in cultured wild ginseng roots and this process might enhance the utilization and values of cultured wild ginseng roots.

홍삼엑기스의 산(pH) 및 온도처리에 의한 기능성 사포닌 함량증대 (Increase of Functional Saponin by Acidic Treatemnt and Temperature of Red Ginseng Extract)

  • 인준교;이범수;김은정;박명한;양덕춘
    • 한국자원식물학회지
    • /
    • 제19권1호
    • /
    • pp.139-143
    • /
    • 2006
  • 고기능성 홍삼사포닌성분의 함량을 증대시키기 위한 목적으로 홍삼엑스에 열처리, 산(acid)처리하여 그 가능성을 조사하였다. 산도를 조정하지 않은 무처리구(control, pH 4.4)에 $120^{\circ}C$ 열처리한 경우 ginsenoside-$Rg_3$의 함량이 약 2배 정도 증가였다. 구연산으로 pH 2.0으로 조정하고 온도처리한 처리구에서는 2.8배나 많은 ginsenoside-$Rg_3$ 성분이 증가하였으나 다른 유효한 사포닌의 파괴가 두드러져 처음 홍삼엑스에 함유되어 있던 총사포닌의 65% 정도가 소실되었다. $80^{\circ}C$에서 12시간 처리를 한 경우에는 pH를 2.5와 2.0로 조정한 처리구에서는 11.20 mg과 12.50 mg으로 홍삼엑스의 3.3 mg보다 3.3배 이상 ginsenoside-$Rg_3$ 성분이 변환되었다. Ginsenoside-$Rb_1,\;Rb_2$, Rc, Re, $Rg_1$의 함량이 산도가 높아짐에 따라서 급격히 소실되었고 홍삼 특이성분(ginsenoside-$Rg_3,\;Rh_2,\;Rh_1$)의 함량은 현저히 증가되었다. 매실엑스로 pH를 2.5로 조정한 처리구에서는 13.34 mg으로 홍삼엑스의 3.3 mg보다 4배 이상 변환된 것으로 분석되었다. 비록 31%정도의 total saponin의 감소가 있었으나 $120^{\circ}C$의 고온처리에서 처럼 다른 유효한 사포닌의 큰 손실 없이 $60^{\circ}C$에 12시간 처리하는 것만으로도 다량의 ginsenoside-$Rg_3$를 생산하는 것을 확인하였다.

초단파 및 식초 처리에 의한 삼칠삼 추출물의 인삼 사포닌 성분 변화 (The Change of Ginsenoside Composition in Notoginseng Root(Panax notoginseng) Extract by the Microwave and Vinegar Process)

  • 조희경;조순현;고성권
    • 생약학회지
    • /
    • 제45권4호
    • /
    • pp.320-325
    • /
    • 2014
  • The purpose of this study is to develop a new preparation process of Notoginseng root(Panax notoginseng) extracts having high concentrations of ginsenoside $Rg_3$, $Rg_5$, $Rk_1$ and $Rh_4$, a special component of Red and Black ginseng(Panax ginseng). Chemical transformation from ginseng saponin to prosapogenin was analyzed by the HPLC. Extracts of Notoginseng root was processed under several treatment conditions including microwave and vinegar(about 14% acidity) treatments. Results of those treatments showed that the quantity of ginsenoside $Rg_3$ increased by over 7.6% at 15 minutes of pH 2~4 vinegar and microwave treatments. The results of processing with MPN-15 indicate that the microwave and vinegar(about 14% acidity) processed Notoginseng root extracts that had gone through 15-minute treatments were found to contain the largest amount of ginsenoside $Rg_3$(7.639%), $Rg_5$(6.061%), $Rk_1$(1.516%) and $Rh_4$(1.599). It is thought that such results provide basic information in preparing Notoginseng root extracts with functionality enhanced.

압출성형이 인삼의 성분변화에 미치는 영향 (Effect of Extrusion Process on the Change of Components in Ginseng)

  • 유병희;최미정;정구춘;이시경
    • 한국식품과학회지
    • /
    • 제44권4호
    • /
    • pp.411-416
    • /
    • 2012
  • 본 연구에서는 인삼의 수용성 물질의 추출 수율을 높이고 압출 온도가 ginsenoside 및 당의 변화에 미치는 영향을 조사하기 위하여 압출온도를 달리하여 제조한 압출성형 백삼의 추출수율과 성분의 변화를 조사하였다. 인삼의 증류수 추출 수율은 압출성형 백삼이 가장 높았으며 백삼이 가장 낮았다. 압출 성형백삼의 경우는 압출 온도가 높을수록 추출 수율이 증가하였다. 또한 증류수 추출시 80% 에탄올 추출시보다 추출수율이 증가하였다. 조사포닌 함량은 압출 성형 백삼이 가장 높았으며 이는 압출 온도가 증가함에 따라 조사포닌 함량도 증가하였다. 11종의 총 ginsenoside함량은 홍삼이 가장 높았다. 백삼에서는 Re의 함량이 가장 높았고, 홍삼에서는 Rg1, Rg3, Rb2가 가장 높았다. 압출성형 백삼에서는 Rg2, Rh1 및 Rh2의 함량이 증가되었다. 인삼의 유리당 함량은 홍삼이 가장 높았으며 압출 성형 인삼이 가장 낮았다. 인삼의 명도(L)값은 백삼이 가장 높았으며 압출 성형백삼이 가장 낮았다. 적색도(a)와 황색도(b) 값은 압출성형 백삼이 가장 높았다. 이상의 실험에서 압출 성형 백삼은 정수로 추출 시 추출 수율이 백삼에 비해 25%이상 높았고, 조사포닌 함량도 약 20% 높았다. 또한 Rg2, Rh1, Rh2, Rg3의 ginsenoside 함량이 백삼에 비해 월등히 높았다. 이는 압출 성형 백삼을 이용하여 제품 개발 시 높은 추출 수율, 사포닌 함량이 높은 제품을 만들 수 있을 가능성을 보여 주는 결과라 생각된다.

Six new dammarane-type triterpene saponins from Panax ginseng flower buds and their cytotoxicity

  • Li, Ke-Ke;Li, Sha-Sha;Xu, Fei;Gong, Xiao-Jie
    • Journal of Ginseng Research
    • /
    • 제44권2호
    • /
    • pp.215-221
    • /
    • 2020
  • Background: Panax ginseng has been used for a variety of medical purposes in eastern countries for more than two thousand years. From the extensive experiences accumulated in its long medication use history and the substantial strong evidence in modern research studies, we know that ginseng has various pharmacological activities, such as antitumor, antidiabetic, antioxidant, and cardiovascular system-protective effects. The active chemical constituents of ginseng, ginsenosides, are rich in structural diversity and exhibit a wide range of biological activities. Methods: Ginsenoside constituents from P. ginseng flower buds were isolated and purified by various chromatographic methods, and their structures were identified by spectroscopic analysis and comparison with the reported data. The 3-(4,5-dimethyl-2-thiazolyl)-2,5-diphenyl-2H- tetrazolium bromide method was used to test their cytotoxic effects on three human cancer cell lines. Results: Six ginsenosides, namely 6'-malonyl formyl ginsenoside F1 (1), 3β-acetoxyl ginsenoside F1 (2), ginsenoside Rh24 (6), ginsenoside Rh25 (7), 7β-hydroxyl ginsenoside Rd (8) and ginsenoside Rh26 (10) were isolated and elucidated as new compounds, together with four known compounds (3-5 and 9). In addition, the cytotoxicity of these isolated compounds was shown as half inhibitory concentration values, a tentative structure-activity relationship was also discussed based on the results of our bioassay. Conclusion: The study of chemical constituents was useful for the quality control of P. ginseng flower buds. The study on antitumor activities showed that new Compound 1 exhibited moderate cytotoxic activities against HL-60, MGC80-3 and Hep-G2 with half inhibitory concentration values of 16.74, 29.51 and 20.48 μM, respectively.

Ginsenoside-Rh2 Inhibits Proliferation and Induces Apoptosis of Human Gastric Cancer SGC-7901 Side Population Cells

  • Qian, Jun;Li, Jing;Jia, Jian-Guang;Jin, Xin;Yu, Da-Jun;Guo, Chen-Xu;Xie, Bo;Qian, Li-Yu
    • Asian Pacific Journal of Cancer Prevention
    • /
    • 제17권4호
    • /
    • pp.1817-1821
    • /
    • 2016
  • Objectives: To observed the effects of ginsenoside -Rh2 (GS-Rh2) on proliferation and apoptosis of side population (SP) human gastric cancer SGC-7901 cells. Materials and Methods: SGC-7901 SP and Non-SP cells were sorted by flow cytometry and assessed using the cck-8 method. Expression of apoptosis-related proteins Bax and Bcl-2 of SP before and after the intervention was determined by Western-blotting. Results: It was found that the proliferation of SP was significantly faster than that of NSP (P<0.05). In addition, GS-Rh2 inhibited proliferation of gastric cancer SP cells, induced cell cycle arrest and cell apoptosis, and changed the expression of BAX/Bcl-2 proteins in a time-dependent and concentration-dependent manner (P<0.05). Conclusions: With increase of GS-Rh2 dose, GS-Rh2 gradually inhibit the proliferation of SGC-7901 SP cells, which have high proliferation rate, through G1/G0 phase arrest, followed by apoptosis which involves the up-regulation of Bax and the down-regulation of Bcl-2.

The Production of Anti-cancer Substances by in vitro Grown Cultures of Panax ginseng C.A. Meyer

  • Yang, Deok-Chun;Park, Kyung-Hwa;Kim, Yong-Hae;Yoon, Eui-Soo;Kang, Tae-Jin;Park, Kwang-Tae
    • 한국자원식물학회:학술대회논문집
    • /
    • 한국자원식물학회 1999년도 The 6th International Symposium on the Development of Anti-Cancer Resource from Plants
    • /
    • pp.46-57
    • /
    • 1999
  • Ginseng(Panax ginseng C.A. Meyer) is important medicinal plant but requires 4-year cultivation for root harvest because of slow growth. In contrast, ginseng callus and hairy roots grow vigorously and may Produce the same or more biologically active compounds for human health than natural ginseng roots. Therefore, ginseng callus and hairy roots can be used for commercial purposes. Polyacetylene, one of anti-cancer compounds in ginseng, was not detected in the callus cultured on the medium containing 2, 4-B, but cells derived from the callus growth was excellent, The ginseng calli cultured on the medium containing 2mg11 CPA and 0.05mg/1 BA was grown vigorously and produced panaxydol, one of ginseng polyacetylene. The biosynthesis of polyacetylene in callus was not affected by addition of NAA and sucrose in media. The SH medium was better than the MS medium for ginseng callus growth and biosynthesis of panaxydol. Another ginseng anti-cancer compounds, ginsenoside-Rg$_3$, Rh$_1$and Rh$_2$ were detected in ginseng hairy roots by heat treatment. Those of Panax ginseng were obtained after root disks of three-year old roots were infected with Agrobacterium rhizogenes Rl000 $A_4$T in dark condition after one month of culture. The optimum growth of hairy roots was achieved in the culture of 1/2 MS liquid medium in dark(22$^{\circ}C$) under 60 rpm gyratory shaking. Hairy roots grew well in 5 ι Erlenmeyer flasks, 1ι roller drums, 10ι jar-fermenters, and especially in 20ι air-lift .culture vessels. All heat treatments had remarkably different ginsenoside contents. Eleven ginsenosides were determined in heat treatment, eight in freeze dried hairy roots. Contents of ginsenoside-Rbl , Rb2, Rc, Rd. Re, Rf, and Rg$_1$tested in all heat treatments were less than those of freeze dried hairy roots. Contents of glnsenoside-Rg$_2$ in heat treatment for 1 hour at 105$^{\circ}C$ was 4.92mg/g dry wt, 3.9 times higher than 1.27 mg/g dry wt of freeze dried hairy roots. The optimum condition of heat treatment for the production of ginsenoside-Rg$_3$and Rhl was 2 hours at 105$^{\circ}C$, and ginsenoside content was 2.58mg/g dry wt and 3.62mg/g dry wt, respectively. The production of ginsenoside-Rh2 was the highest in heat treatment for 2 hours at 105$^{\circ}C$ among treatments examined, and ginsenoside-Rh$_2$content was 1.08mg/g dry wt.

  • PDF

Four New Darnmarane-Glycosidesl Ginsenosides $Rg_5, Rh_4, Rs_3, AND Ff_2$, from Korean Red Ginsengs the Root off]unarm ginseng C. A. Meyer

  • Jong Dae Park;Nam
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1998년도 Advances in Ginseng Research - Proceedings of the 7th International Symposium on Ginseng -
    • /
    • pp.115-126
    • /
    • 1998
  • Four new dammarnae-glycosides named ginsenosides Rgs, Rh4, RsB and Rf2 have been isolated 1'rom Korean red ginseng, the root of Panax ginseng C. A. Meyer (Araliaceae) and their chemical structures have been elucidated by chemical and spectroscopic methods, including'H-'H COSY, HMQC, HMBC, NOESY, as 3-0- [$\beta$-D-glucopyranosyl(1 ~2)-$\beta$-D-glucopyranosyl] dammar-20(22) , B4-diene-3P,12P-diol (ginsenoside Rgs),6-0-$\beta$-D-glucopyranosyl-dammar-20(22),24-diene-3P,6P, 12P-triol (ginsenoside Rh4),3-0- [6" -0-acetyl-D-glucopyranosyl(1 ~2)--D-glucopyranosyl] 20(5)- protopanaxadiol (ginsenoside Rs3) and 6-0- [u-L-rhamno-pyranosyl(1 ~2)-$\beta$-D-glucopyranosyl] dammarane -3$\beta$, 6a, 12 $\beta$, 20(R),25-pentol(ginsenoslde Rfa). The absolute stereo structure of a double bond at C-20(22) was determined as entgegen type by applying NOESY.OESY.

  • PDF

The Changes of Ginsenoside Patterns in Red Ginseng Processed by Organic Acid Impregnation Pretreatment

  • Kim, Mi-Hyun;Lee, Young-Chul;Choi, Sang-Yoon;Cho, Chang-Won;Rho, Jeong-Hae;Lee, Kwang-Won
    • Journal of Ginseng Research
    • /
    • 제35권4호
    • /
    • pp.497-503
    • /
    • 2011
  • In order to enhance bioactive functionalities of ginseng, an acid impregnation processing was applied as a pre-treatment in producing red ginseng. Acid impregnation studies were conducted, and acids (ascorbic, malic, and citric acid) were selected. The optimal concentration of each acid was investigated in this study in terms of ginsenoside contents. The most concerned ginsenoside, $Rg_3$ was increased by ascorbic, malic, and citric acid pre-treated red ginseng up to 1 M acid concentration. In the case of ascorbic acid pre-treated red ginseng, $Rg_2$ concentration was increased depending on acid concentrations. Citric acid pre-treatment enhanced $Rg_2$, $Rg_3$, and $Rh_1+Rh_2$ formation in red ginseng. Therefore, ginsenoside patterns in red ginseng could be changed by acid impregnation pre-treatment depending on acid concentration and acid types. This research is expected to contribute to the development of the ginseng industry via new red ginseng products with selective and intensified functionality.

발효처리가 인삼잎의 진세노사이드 및 페놀산 조성 변화와 생리활성에 미치는 영향 (Ginsenoside, Phenolic Acid Composition and Physiological Significances of Fermented Ginseng Leaf)

  • 이가순;성봉재;김관후;김선익;한승호;김현호;백남두
    • 한국식품영양과학회지
    • /
    • 제39권8호
    • /
    • pp.1194-1200
    • /
    • 2010
  • 본 연구에서는 인삼잎이 인삼뿌리보다 사포닌 함량이 높은 부위로서 식품 소재로 이용가치가 있을 것으로 생각되어 인삼잎을 이용하여 차 제품을 개발하기 위한 방안으로 인삼잎을 발효시켜 진세노사이드 조성 및 형태별 페놀산 조성의 변화를 분석하고 인삼잎을 침출시켜 침출액에 대한 전자공여능과 tyrosinase 저해활성을 측정하였다. 인삼잎에서 진세노사이드는 10종이 검출되었고 주된 진세노사이드는 ginsenoside-Rg1(26.0 mg/g), -Re(47.3 mg/g) 및 -Rd(23.9mg/g)이었고 발효에 의하여 ginsenoside-Rh2, -Rh1, -Rg2 및 -Rg3는 증가하였으며 특히 Rg3는 15배가 증가하였다. 인삼잎의 총 폴리페놀성 함량은 350.4 mg%이었고 발효인삼잎은 312.5 mg%으로 발효에 의해서는 약간 감소하였다. 인삼잎의 페놀산은 결합형은 검출되지 않았고, 유리형과 에스테르형이 각각 8 및 6종이 검출되었으며 그중에서 ferulic acid가 각각 12.6 및 50.7 mg%로 가장 많은 함량을 차지하고 있었다. 발효인삼잎에서는 ferulic acid는 상당량이 감소하였으나 protocatechuic acid, p-hydroxybenzoic acid, vanillic acid의 3종의 페놀산이 유리형, 에스테르형 및 결합형 모두에서 상당량 증가하여 총 함량이 각각 28배, 5배 및 7.8배 증가하였다. 인삼잎을 침출시킨 액을 이용하여 전자공여능과 tyrosinase 저해활성을 측정한 결과 전자공여능은 발효에 의하여 활성이 증가하지는 않았으나, tyrosinase 저해활성은 증가하여 $500\;{\mu}L/mL$ 농도로 첨가 시 46.5%를 나타내어 무발효인삼잎에 비하여 2배 이상 증가하여 시판녹차와 비슷한 결과를 보여주었다.