• Title/Summary/Keyword: ginsenoside RbI

Search Result 53, Processing Time 0.029 seconds

Pattern of Molecular Aggregation of Ginsenosides in Aqueous Solution (수용액(水溶液)에서 인삼배당체(人蔘配糖體)의 분자결합양상(分子結合樣相))

  • Park, Hoon;Lee, Mee-Kyoung;Park, Qwi-Hee
    • Applied Biological Chemistry
    • /
    • v.29 no.2
    • /
    • pp.198-206
    • /
    • 1986
  • For the information on micellization at each ginsenoside level aqueous solution of purified saponin of Panax ginseng root was dialyzed through dialysis tubing (MW 12,000) or eluted through Bio-Gel P-2 (MW 200-2,000) and analysed for ginsenosides by high performance liquid chromatography. Ginsenosides can be classified into three groups depending upon molecular aggregation pattern and spatial arrangement of hydrophilic parts in molecule. Group I that is large micelle former(aggregation number: above 10) and one side hydrophilic part (HP) includes $ginsenoside\;Rb_1$, $Rb_2$, Rc and Rd (diols). Group II thai is small micelle former (aggregation number:>10-1) and semi-two sales HP includes $Rg_2$, Rf (triol) and $Rg_3$ (diol). Group III that is no micelle former (aggregation number: 1) and two sides HP includes Re and $Rg_1$ (triol).

  • PDF

Synthesis of ginsenoside Rb1-imprinted magnetic polymer nanoparticles for the extraction and cellular delivery of therapeutic ginsenosides

  • Liu, Kai-Hsi;Lin, Hung-Yin;Thomas, James L.;Shih, Yuan-Pin;Yang, Zhuan-Yi;Chen, Jen-Tsung;Lee, Mei-Hwa
    • Journal of Ginseng Research
    • /
    • v.46 no.5
    • /
    • pp.621-627
    • /
    • 2022
  • Background: Panax ginseng (ginseng) is a traditional medicine that is reported to have cardioprotective effects; ginsenosides are the major bioactive compounds in the ginseng root. Methods: Magnetic molecularly imprinted polymer (MMIP) nanoparticles might be useful for both the extraction of the targeted (imprinted) molecules, and for the delivery of those molecules to cells. In this work, plant growth regulators were used to enhance the adventitious rooting of ginseng root callus; imprinted polymeric particles were synthesized for the extraction of ginsenoside Rb1 from root extracts, and then employed for subsequent particle-mediated delivery to cardiomyocytes to mitigate hypoxia/reoxygenation injury. Results: These synthesized composite nanoparticles were first characterized by their specific surface area, adsorption capacity, and magnetization, and then used for the extraction of ginsenoside Rb1 from a crude extract of ginseng roots. The ginsenoside-loaded MMIPs were then shown to have protective effects on mitochondrial membrane potential and cellular viability for H9c2 cells treated with CoCl2 to mimic hypoxia injury. The protective effect of the ginsenosides was assessed by staining with JC-1 dye to monitor the mitochondrial membrane potential. Conclusion: MMIPs can play a dual role in both the extraction and cellular delivery of therapeutic ginsenosides.

Effects of Ginsenosides on $GABA_A$ Receptor Channels Expressed in Xenopus Oocytes

  • Choi, Se-Eun;Choi, Seok;Lee, Jun-Ho;Paul J.Whiting;Lee, Sang-Mok;Nah, Seung-Yeol
    • Archives of Pharmacal Research
    • /
    • v.26 no.1
    • /
    • pp.28-33
    • /
    • 2003
  • Ginsenosides, major active ingredients of Panax ginseng, are known to regulate excitatory ligand-gated ion channel activity such as nicotinic acetylcholine and NMDA receptor channel activity. However, it is not known whether ginsenosides affect inhibitory ligand-gated ion channel activity. We investigated the effect of ginsenosides on human recombinant $GABA_A$ receptor (${\alpha}_1{\beta}_1{\gamma}_{2s}$) channel activity expressed in Xenopus oocytes using a two-electrode voltage-clamp technique. Among the eight individual ginsenosides examined, namely, $Rb_1$, $Rb_2$, Rc, Rd, Re, Rf, $Rg_1$ and $Rg_2$, we found that Rc most potently enhanced the GABA-induced inward peak current ($I_{GABA}$). Ginsenoside Rc alone induced an inward membrane current in certain batches of oocytes expressing the $GABA_A$ receptor. The effect of ginsenoside Rc on $I_{GABA}$ was both dose-dependent and reversible. The half-stimulatory concentration ($EC_{50}$) of ginsenoside Rc was 53.2$\pm$12.3 $\mu$M. Both bicuculline, a $GABA_A$ receptor antagonist, and picrotoxin, a $GABA_A$ channel blocker, blocked the stimulatory effect of ginsenoside Rc on $I_{GABA}$. Niflumic acid (NFA) and 4,4'-diisothiocyanostilbene-2,2'-disulfonic acid (DIDS), both $CI^{-1}$ channel blockers, attenuated the effect of ginsenoside Rc on I$I_{GABA}$. This study suggests that ginsenosides regulated $GABA_A$ receptor expressed in Xenopus oocytes and implies that this regulation might be one of the pharmacological actions of Panax ginseng.

Effect of Korean red ginseng on collagen biosynthesis and MMP-I activity in human dermal fibroblast (홍삼성분이 섬유아세포의 콜라겐 생합성과 MMP-1 활성에 미치는 영향)

  • Kim, Na-Mi;Koo, Bon-Suk;Lee, Seong-Kye;Hwang, Eui-Il;So, Seung-Ho;Do, Jae-Ho
    • Journal of Ginseng Research
    • /
    • v.31 no.2
    • /
    • pp.86-92
    • /
    • 2007
  • This study was carried out to develop health & functional food by using Korean red ginseng for prevention of skin wrinkles. Effects of Korean red ginseng on the collagen biosynthesis and inhibition of matrix metalloproteinase-I (MMP-1) activity in human dermal fibroblast were investigated. Crude saponin contents of Korean red ginseng water extract (WE), Korean red ginseng ethanol extracts (EE) and Korean Red ginseng purified extracts (PE) were 72 mg/g, 107 mg/g and 220 mg/g, respectively. We incubated human fibroblast cell with Korean red ginseng component by addition of l ${\mu}g/ml$, 5 ${\mu}g/ml$, 10 ${\mu}g/ml$. Amount of collagen biosynthesis was 1.86 ng/ml in control sample and 2.85 ng/ml, 2.05 ng/ml and 2.58 ng/ml in retinoic acid, EE and PE respectively. Furthermore, $ginsenoside-Rg_1$ and $ginsenoside-Rb_1$ were shown 2.01 ng/ml and 3.07 ng/ml. MMP-l activities of EE, PE, $ginsenoside-Rg_1$ and $ginsenoside-Rb_1$ were decreased to 92%, 94%, 91% and 78% respectively as compared with control. Cell proliferation were showed 84-96% in the Korean red ginseng components. The antioxidative SOD activities of the Korean red ginseng components were showed 28-69%, however it was lower than that of Vitamin C. From this results, we conclude that Korean red ginseng have a anti-wrinkle effect and $ginsenoside-Rb_1$ may be considered as a more effective component.

Effect of Ginseng Components on Content of Cholesterol and Activity of Acyl CoA.Cholesterol Acyltransferase in Hep G2 Cells Cultured in Cholesterol Rich Medium (고콜레스테를 조건으로 배양한 Hep G2세포의 콜레스테를 함량변동과 Acyl CoA : Cholesterol Acyltransferase의 활성에 미치는 인삼성분의 영향)

  • Park, Song-Chul;Noh, Yun-Hee;Koo, Ja-Hyun
    • Journal of Ginseng Research
    • /
    • v.19 no.3
    • /
    • pp.212-218
    • /
    • 1995
  • A human hepatoma cell line, hep G2, was used to investigate the mechanism of serum cholesterol reduction by ginseng total saponin, ginsenoside-$Rb_1$, - $Rb_2$, and non-saponin fraction (ether extraction). Hep G2 cells were incubated in 10 $\mu\textrm{g}$/ml of cholesterol containing serum free-RPMl1640 medium with various concentration of ginseng components. The amounts of cholesterol in Hep G2 cells were decreased to maximum 51% in total saponin or two ginsenoside-treated groups while there was 137% increase in cholesterol level of control group as compared with that of normal group. Nonsaponin groups did not show the same effect. In order to elucidate the observed changes in the amount of cholesterol, the activity of amyl CoA : cholesterol acyltransferase (ACAT) in groups showing remarkable reduction in cholesterol amount, i.e., total saponin 10-6%, ginsenoside-$Rb_1$ $10^{-4}$%, ginsenoside-$Rb_2$, $10^{-4}$%, and non-saponin fraction $10^{-4}$%, was assayed using [1-$^{-14}C$%]oleic acid as enzyme substrate. The activity of ACAT was increased in all groups tested as compared with that of control group except for non-saponin group cultured in water soluble cholesterol containing medium. The serum cholesterol lowering effects of ginseng components can partially be attributed to the increased hepatocellular ACAT activity.

  • PDF

Potential Role of Anti-inflammation by Red Ginseng in Rat Microglia

  • Yoo, Yeong-Min;Joo, Seong-Soo;Lee, Seon-Goo;Lee, Do-Ik
    • Journal of Physiology & Pathology in Korean Medicine
    • /
    • v.19 no.1
    • /
    • pp.242-245
    • /
    • 2005
  • The most common feature of neurodegenerative disease (i.e. Alzheimer's disease, AD) is the increased number of activated microglial cells nearby the pathogenic area of the brain, such as amyloid plaque in AD. An abnormality of protein regulation and an imbalance of clearance against ${\beta}-amyloid\;(A{\beta})$ produced amyloid precursor protein (APP) can turn microglia into the activated feature out of the ramified resting phase. We examined the possibility that ginsenoside Rb1 could attenuate the microglial activation induced by massive $A{\beta}$ that has known to induce a chronic inflammation, which is a major cause of AD by damaging neuronal cells (i.e. apoptosis or necrosis). Aggregated $A{\beta}42\;(5\;{\mu}M)$ peptide was used with lipopolysaccharide (LPS) ($10\;{\mu}g$) for a comparative control up to 48hours. We found that Rb1 reduced the production of nitric oxide as well as proinflammatory cytokines, such as $IL-1{\beta}$ and $TNF-{\alpha}$.

Inhibitory Effects of Ginsenosides on Glutamate-Induced Swelling of Cultured Astrocytes

  • Seong, Yeon-Hee;Koh, Sang-Bum;Kim, Hack-Seang
    • Journal of Ginseng Research
    • /
    • v.24 no.3
    • /
    • pp.138-142
    • /
    • 2000
  • Effects of ginsenosides (Rb$_1$, Rb$_2$, Rc, Re, Rg$_1$, Rf) on L-glutamate (glutamate)-induced swelling of cultured astrocytes from rat brain cerebral cortex were studied. Following the exposure to 0.5mM glutamate for 1 hr, the intracellular water space (as measured by [$^3$H]O-methyl-D-glucose uptake) of astrocytes increased by about two-fold. Simultaneous addition of ginsenosides Rb$_2$ and Rc with glutamate reduced the astrocytic swelling in a dose-dependent manner. These ginsenosides at 0.5 mg/ml did not affect the viability of astrocytes for up to 24 hr which was determined by a colorimetric assay (MTT assay) for cellular growth and survival. These ginsenosides at 0.3 mg/ml inhibited the increase of intracellular Ca$\^$2+/ concentration ([Ca$\^$2+/]$\_$i/) induced by glutamate. These data suggest ginsenosides Rb$_2$ and Rc prevent the cell swelling of astrocytes induced by glutamate, maybe via inhibition of Ca$\^$2+/ influx.

  • PDF

Studies of Ginseng on the Antistress Effects (인삼(人蔘)의 항(抗)스트레스작용(作用)에 관(關)한 연구(硏究))

  • Kim, Nak-Doo;Hahn, Byung-Hoon;Lee, Eun-Bang;Kong, Jae-Yang;Kim, Myoung-Hye;Jin, Chang-Bae
    • Korean Journal of Pharmacognosy
    • /
    • v.10 no.2
    • /
    • pp.61-67
    • /
    • 1979
  • Two pure saponin components, Panax saponin C (protopanaxatriol derivative, ginsenoside Re) and Panax saponin E (protopanaxadiol derivative, ginsenoside $Rb_l$) were isolated from Panax ginseng root and their acute toxicities in mice and antistress effects in rats were investigated. Average lethal doses $(LD_{50})$ of ginsenoside Re were 130mg/kg (i.v.), more than 1,000mg/kg (i.p.) and more than 1,500mg/kg (s.c.), respectively. Average lethal dose of ginsenoside $Rb_{1}$ was 243mg/kg intravenously. Adrenal ascorbic acid and cholesterol contents were significantly decreased when normal rats were exposed to heat $(40^{\circ}C)$ for 30 min. The reduction of the adrenal ascorbic acid and cholesterol contents in rats was partially prevented when the rats received the ginseng saponins prior to exposure to heat stress and most pronounced effects were observed in rats received ginsenoside Re. However, it was found that administration of ginseng alone, without stress, did not significantly change the ascorbic acid and cholesterol contents in adrenal glands. Eosinophil counts in the blood of the rats were elevated when the rats were exposed to the heat stress, and the elevation of the eosinophil counts were prevented with the ginseng saponins under the stress, but the changes were all insignificant statistically.

  • PDF

Efficient Elicitation of Ginsenoside Biosynthesis in Cell Cultures of Panax notoginseng by Using Self-chemically-synthesized Jasmonates

  • Wang Wei;Zhao Zhen-Jiang;Xu Yufang;Qian Xu hong;Zhong Jian-Jiang
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.2
    • /
    • pp.162-165
    • /
    • 2005
  • A series of fluorine and hydroxyl containing jasmonate derivatives, which were chemically synthesized in our institute, were investigated for their effects on the biosynthesis and heterogeneity of ginsenosides in suspension cultures of Panax notoginseng cells. Com-pared to the control (without addition of elicitors), $100{\mu}M$ of each of the jasmonate was added on day 4 to the suspension cultures of P. notoginseng cells. It was observed that, jasmonates greatly enhanced the ginsenoside content and the ratio of Rb group to Rg group (i.e. $(Rb_1\;+\;Rd)/(Rg_1\;+\;Re)$ in the P. notoginseng cells. Some of the synthetic jasmonates, such as pentafluoropropyl jasmonate (PFPJA), 2-hydroxyethyl jasmonate (HEJA) and 2-hydroxye-thoxyethyl jasmonate (HEEJA), could promote the ginsenoside content to $2.55\;\pm\;0.11,\;3.65\;\pm\;0.13\;and\;2.94\;\pm\;0.06$mg/100 mg DW, respectively, compared to that of $0.64\;\pm\;0.06$mg/100 mg DW for the control and $2.17\;\pm\;0.04$ mg/100 mg DW by the commercially available methyl jasmonate (MJA); and they could change the respective Rb:Rg ratio to $1.60\;\pm\;0.04,\;1.87\;\pm\;0.01\;and\;1.56\;\pm\;0.05$, compared to that of $0.47\;\pm\;0.01$ for the control and $1.42\;\pm\;0.06$ by MJA. The results suggest that suitable esterification of MJA with fluorine or hydroxyl group could in-crease the elicitation activity to induce plant secondary metabolism. The information obtained from this study is useful for hyper-production of heterogeneous products by plant cell cultures.

Studies on Pharmaceutical Quality of Oriental Medicinal Preparations (I) - Studies on Decoction of Nokyong-Sagunja-Tang - (한방방제의 제제학적 연구(1) - 추출방법에 따른 녹용사군자탕의 비교 -)

  • Choi, Hyuck-Jae;Kim, Eun-Jin;Kim, Sung-Soo;Kim, Nam-Jae
    • Korean Journal of Pharmacognosy
    • /
    • v.37 no.3
    • /
    • pp.143-150
    • /
    • 2006
  • Decoction of oriental medicinal preparation is prepared in various manners, and changes of chemical constituents might be occurred depending on the processing techniques. The present study was undertaken to investigate the phγsio-chemical and pharmacological equivalence between two extraction methods of Nokyong-sagunja-Tang. Samples were Prepared as follows ; Sample-I was prepared by simultaneously extracting Sagunja-Tang and velvet antler in one vessel. Sample-lI was prepared by adding velvet antler exact to the water extract of Sagunja-Tang. Both sanples showed similar results of physiochemical parameters such as pH, yield, TLC and HPLC chromatogram, and contents of ginsenoside $Rb_1$ and glycyrrhizin. Also, there were little different between two samples in pharmacological effects such as DPPH free radical scavenging effect, and inhibitory effects on xanthine oxidase, hyaluronidase, trypsin, TBA-Rs formation and hemolysis in vitro. And both samples showed no significant difference in antifatigue activities in mice. These results suggest that there might be little difference between two extraction process when velvet antler added to Sagunia-Tang.