• 제목/요약/키워드: ginsenoside Rb

검색결과 549건 처리시간 0.03초

LC-MS/MS를 이용한 반하사심탕 물 추출물 중 13종 성분의 함량분석 (Quantitative Determination of the Thirteen Marker Components in Banhasasim-Tang Decoction Using an Ultra-Performance Liquid Chromatography Coupled to Electrospray Ionization Tandem Mass Spectrometry)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제47권1호
    • /
    • pp.62-72
    • /
    • 2016
  • Banhasasim-tang is a well-known traditional Korean herbal formula and has been used clinically for the treatment of gastric disease, including acute and chronic gastritis, diarrhea and gastric ulcers in Korea. In this study, an ultra-performance liquid chromatography-electrospray ionization-mass spectrometer method was developed for the quantitative determination of the 13 marker constituents, homogentisic acid (1), 3,4-dihydroxybenzaldehyde (2), spinosin (3), liquiritin (4), baicalin (5), ginsenoside Rg1 (6), liquiritigenin (7), wogonoside (8), ginsenoside Rb1 (9), baicalein (10), glycyrrhizin (11), wogonin (12), and 6-gingerol (13) in Banhasasim-tang decoction. Separation of the compounds 1-13 was using an UPLC BEH $C_{18}$ ($100{\times}2.1mm$, $1.7{\mu}m$) column and column oven temperature was maintained at $45^{\circ}C$. The mobile phase consisted of 0.1% (v/v) formic acid in water (A) and acetonitrile (B) by gradient elution. The injection volume and flow rate were $2.0{\mu}L$ and 0.3 mL/min, respectively. Calibration curves of the compounds 1-13 were showed with $r^2$ values ${\geq}0.9908$. The limit of detection and limit of quantification values of the compounds 1-13 were 0.04-1.11 ng/mL and 0.13-3.33 ng/mL, respectively. Among the these compounds, the compounds 1-3 were not detected, while the compounds 4-13 were detected in the ranges of $3.20-107,062.98{\mu}g/g$ in Banhasasim-tang sample.

Improved antimicrobial effect of ginseng extract by heat transformation

  • Xue, Peng;Yao, Yang;Yang, Xiu-shi;Feng, Jia;Ren, Gui-xing
    • Journal of Ginseng Research
    • /
    • 제41권2호
    • /
    • pp.180-187
    • /
    • 2017
  • Background: The incidence of halitosis has a prevalence of 22-50% throughout the world and is generally caused by anaerobic oral microorganisms, such as Fusobacterium nucleatum, Clostridium perfringens, and Porphyromonas gingivalis. Previous investigations on the structure-activity relationships of ginsenosides have led to contrasting results. Particularly, the antibacterial activity of less polar ginsenosides against halitosis-related bacteria has not been reported. Methods: Crude saponins extracted from the Panax quinquefolius leaf-stem (AGS) were treated at $130^{\circ}C$ for 3 h to obtain heat-transformed saponins (HTS). Five ginsenoside-enriched fractions (HTS-1, HTS-2, HTS-3, HTS-4, and HTS-5) and less polar ginsenosides were separated by HP-20 resin absorption and HPLC, and the antimicrobial activity and mechanism were investigated. Results: HPLC with diode-array detection analysis revealed that heat treatment induced an extensive conversion of polar ginsenosides (-Rg1/Re, -Rc, -Rb2, and -Rd) to less polar compounds (-Rg2, -Rg3, -Rg6, -F4, -Rg5, and -Rk1). The antimicrobial assays showed that HTS, HTS-3, and HTS-4 were effective at inhibiting the growth of F. nucleatum, C. perfringens, and P. gingivalis. Ginsenosides-Rg5 showed the best antimicrobial activity against the three bacteria, with the lowest values of minimum inhibitory concentration and minimum bactericidal concentration. One major reason for this result is that less polar ginsenosides can more easily damage membrane integrity. Conclusion: The results indicated that the less polar ginsenoside-enriched fraction from heat transformation can be used as an antibacterial agent to control halitosis.

Ramlibacter ginsenosidimutans sp. nov., with Ginsenoside-Converting Activity

  • Wang, Liang;An, Dong-Shan;Kim, Song-Gun;Jin, Feng-Xie;Kim, Sun-Chang;Lee, Sung-Taik;Im, Wan-Taek
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권3호
    • /
    • pp.311-315
    • /
    • 2012
  • A novel ${\beta}$-proteobacterium, designated BXN5-$27^T$, was isolated from soil of a ginseng field of Baekdu Mountain in China, and was characterized using a polyphasic approach. The strain was Gram-staining-negative, aerobic, motile, non-spore-forming, and rod shaped. Strain BXN5-$27^T$ exhibited ${\beta}$-glucosidase activity that was responsible for its ability to transform ginsenoside $Rb_1$ (one of the dominant active components of ginseng) to compound Rd. Phylogenetic analysis based on 16S rRNA gene sequences showed that this strain belonged to the family Comamonadaceae; it was most closely related to Ramlibacter henchirensis $TMB834^T$ and Ramlibacter tataouinensis$TTB310^T$ (96.4% and 96.3% similarity, respectively). The G+C content of the genomic DNA was 68.1%. The major menaquinone was Q-8. The major fatty acids were $C_{16:0}$, summed feature 4 (comprising $C_{16:1}$ ${\omega}7c$ and/or iso-$C_{15:0}$ 2OH), and $C_{17:0}$ cyclo. Genomic and chemotaxonomic data supported the affiliation of strain BXN5-$27^T$ to the genus Ramlibacter. However, physiological and biochemical tests differentiated it phenotypically from the other established species of Ramlibacter. Therefore, the isolate represents a novel species, for which the name Ramlibacter ginsenosidimutans sp. nov. is proposed, with the type strain being BXN5-$27^T$ (=DSM $23480^T$ = LMG $24525^T$ = KCTC $22276^T$).

PHYSIOLOGICAL RESPONSE OF PANAX GINSENG TO LIGHT

  • Park Hoon
    • 고려인삼학회:학술대회논문집
    • /
    • 고려인삼학회 1980년도 학술대회지
    • /
    • pp.151-170
    • /
    • 1980
  • Physiological response of Panax ginseng var. atropurpureacaulo (purple stem variety, Pg) to light was reviewed through old literatures and recent experiments. Canopy structure, growth, pigment, leaf anatomy, disease occurence, transpiration, photosynthesis (PS), leaf saponin, photoperiodism and nutrient uptake were concerned. P. ginseng var. xanthocarpus (yellow berry variety, Px) and Panax quinquefolius(Pq) were compared with Pg if possible. Compensation point(Cp) increased with increase of light and ranged from 110 to 150 at $20^{\circ}C$ but from 140 to 220 at $30^{\circ}C$ with 4 to 15 Klux indicating occurence of light and temperature-dependent high photorespiration. Characteristics of Korea ginseng to hate high temperature was well accordance with an observation 2000 years ago. Korea ginseng showed lower Cp and appeared to be more tolerant to high light intensity and temperature than American sheng although the latter showed greater PS, stomata frequency and conductance, chlorophyll and carotenoids. Px showed lower PS than Pg probably due to higher Cp. Total leaf saponin was higher in leaves grown under high light. Ratio or diol saponin and triol saponin(PT/PD) decreased with increase of light intensity during growing mainly due to decrease of ginsenoside $Rg_1$ but increase of ginsenoside Rd. Leaves of Pg and Px had $Rg_1$ but no $Rb_3$ which was only found as much as $20\%$ of total in Pq leaves, and decreased with increase of light intensity. Re increased in Pg and Px but decreased in Pq with increase of light. PT/PD in leaf ranged 1.0-1.5 in Pg and Px but around 0.5 in Pq. Korea ginseng has Yang characteristics(tolerant to high light and temperature), cultured under Eum(shade) condition and long been used for Yang efficacy (to build up energy) while Pq was quite contrary. Traditional low light $intensity(3-8\%)$ for Korea ginseng culture appeared to be strongly related to historical unique quality. Effect of light quality and photoperiodism was not well known. Experiences are long but scientific knowledge is short for production and quality assessment of ginseng. Recent scientific knowledge of ginseng should learn wisdom from old experiences.

  • PDF

Qualitative and Quantitative Analysis of Thirteen Marker Components in Traditional Korean Formula, Samryeongbaekchul-san using an Ultra-Performance Liquid Chromatography Equipped with Electrospray Ionization Tandem Mass Spectrometry

  • Seo, Chang-Seob;Shin, Hyeun-Kyoo
    • Natural Product Sciences
    • /
    • 제22권2호
    • /
    • pp.93-101
    • /
    • 2016
  • For efficient quality control of the Samryeongbaekchul-san decoction, a powerful and accurate an ultra-performance liquid chromatography (UPLC) coupled with electrospray ionization (ESI) tandem mass spectrometry (MS) method was developed for quantitative analysis of the thirteen constituents: allantoin (1), spinosin (2), liquiritin (3), ginsenoside Rg1 (4), liquiritigenin (5), platycodin D2 (6), platycodin D (7), ginsenoside Rb1 (8), glycyrrhizin (9), 6-gingerol (10), atractylenolide III (11), atractylenolide II (12), and atractylenolide I (13). Separation of the compounds 1 - 13 was performed on a UPLC BEH $C_{18}$ column ($2.1{\times}100mm$, $1.7{\mu}m$) at a column temperature of $40^{\circ}C$ with a gradient solvent system of 0.1% (v/v) formic acid aqueous-acetonitrile. The flow rate and injection volume were 0.3 mL/min and $2.0{\mu}L$. Calibration curves of all compounds were showed good linearity with values of the correlation coefficient ${\geq}0.9920$ within the test ranges. The values of limits of detection and quantification for all analytes were 0.04 - 4.53 ng/mL and 0.13 - 13.60 ng/mL. The result of an experiment, compounds 2, 6, 12, and 13 were not detected while compounds 1, 3 - 5, and 7 - 11 were detected with 1,570.42, 5,239.85, 299.35, 318.88, 562.27, 340.87, 12,253.69, 73.80, and $115.01{\mu}g/g$, respectively.

Compound K, a ginsenoside metabolite, plays an antiinflammatory role in macrophages by targeting the AKT1-mediated signaling pathway

  • Lee, Jeong-Oog;Choi, Eunju;Shin, Kon Kuk;Hong, Yo Han;Kim, Han Gyung;Jeong, Deok;Hossain, Mohammad Amjad;Kim, Hyun Soo;Yi, Young-Su;Kim, Donghyun;Kim, Eunji;Cho, Jae Youl
    • Journal of Ginseng Research
    • /
    • 제43권1호
    • /
    • pp.154-160
    • /
    • 2019
  • Background: Compound K (CK) is an active metabolite of ginseng saponin, ginsenoside Rb1, that has been shown to have ameliorative properties in various diseases. However, its role in inflammation and the underlying mechanisms are poorly understood. In this report, the antiinflammatory role of CK was investigated in macrophage-like cells. Methods: The CK-mediated antiinflammatory mechanism was explored in RAW264.7 and HEK293 cells that were activated by lipopolysaccharide (LPS) or exhibited overexpression of known activation proteins. The mRNA levels of inflammatory genes and the activation levels of target proteins were identified by quantitative and semiquantitative reverse transcription polymerase chain reaction and Western blot analysis. Results: CK significantly inhibited the mRNA expression of inducible nitric oxide synthase and tumor necrosis factor-${\alpha}$ and morphological changes in LPS-activated RAW264.7 cells under noncytotoxic concentrations. CK downregulated the phosphorylation of AKT1, but not AKT2, in LPS-activated RAW264.7 cells. Similarly, CK reduced the AKT1 overexpression-induced expression of aldehyde oxidase 1, interleukin-$1{\beta}$, interferon-${\beta}$, and tumor necrosis factor-${\alpha}$ in a dose-dependent manner. Conclusion: Our results suggest that CK plays an antiinflammatory role during macrophage-mediated inflammatory actions by specifically targeting the AKT1-mediated signaling pathway.

LC-ESI-MS에 의한 사군자탕의 지표성분 분석 (Analysis of the Marker Compounds in Sagunja-tang by LC-ESI-MS)

  • 서창섭;신현규
    • 생약학회지
    • /
    • 제50권1호
    • /
    • pp.65-71
    • /
    • 2019
  • One of the oriental medicine prescriptions, Sagunja-tang consists of four herbal medicines (Ginseng Radix, Poria Sclerotium, Atractylodis Rhizoma Alba, and Glycyrrhiziae Radix et Rhizoma) and has been used as a medicine to enhance tonify the function of spleen and stomach in Korea. In this study, we conducted simultaneous analysis of the 9 marker components, liquiritin apioside, liquiritin, ginsenoside Rg1, liquiritigenin, ginsenoside Rb1, glycyrrhizin, atractylenolide III, atractylenolide II, and atractylenolide I in Sagunja-tang using a liquid chromatography-electrospray ionization-mass spectrometry (LC-ESI-MS/MS). Marker compounds were separated on a Waters Acquity UPLC BEH $C_{18}$ analytical column ($2.1{\times}100mm$, 1.7 mm) and the column was maintained at $45^{\circ}C$. The mobile phase consists of 0.1% (v/v) aqueous formic acid and acetonitrile with gradient condition. The LC-MS analysis was performed using a Waters ACQUITY TQD LC-MS/MS system with multiple reaction monitoring (MRM) method in the positive and negative modes. The calibration curves of the nine marker components showed good linearity with coefficient of determination ${\geq}0.9984$ within tested range. The limits of detection and limits of quantification values were 0.27-2.42 ng/mL and 0.81-7.27 ng/mL, respectively. The concentrations of tested 9 analytes in the lyophilized Sagunja-tang sample using the established LC-ESI-MS/MS MRM method were detected up to 16.593 mg/g. These results can be useful as a basic data for the quality control of an oriental medicine prescriptions.

Correlation between the Content and Pharmacokinetics of Ginsenosides from Four Different Preparation of Panax Ginseng C.A. Meyer in Rats

  • Jeon, Ji-Hyeon;Lee, Jaehyeok;Lee, Chul Haeng;Choi, Min-Koo;Song, Im-Sook
    • Mass Spectrometry Letters
    • /
    • 제12권1호
    • /
    • pp.16-20
    • /
    • 2021
  • We aimed to compare the content of ginsenosides and the pharmacokinetics after the oral administration of four different ginseng products at a dose of 1 g/kg in rats. The four different ginseng products were fresh ginseng extract, red ginseng extract, white ginseng extract, and saponin enriched white ginseng extract prepared from the radix of Panax ginseng C.A. Meyer. The ginsenoside concentrations in the ginseng product and the rat plasma samples were determined using a liquid chromatography-tandem mass spectrometry (LC-MS/MS). Eight or nine ginsenosides of the 15 tested ginsenosides were detected; however, the content and total ginsenosides varied depending on the preparation method. Moreover, the content of triglycosylated ginsenosides was higher than that of diglycosylated ginsenosides, and deglycosylated ginsenosides were not present in any preparation. After the single oral administrations of four different ginseng products in rats, only four ginsenosides, such as 20(S)-ginsenosides Rb1 (GRb1), GRb2, GRc, and GRd, were detected in the rat plasma samples among the 15 ginsenosides tested. The plasma concentrations of GRb1, GRb2, GRc, and GRd were different depends on the preparation method but pharmacokinetic features of the four ginseng products were similar. In conclusion, a good correlation between the area under the concentration curve and the content of GRb1, GRb2, and GRc, but not GRd, in the ginseng products was identified and it might be the result of their higher content and intestinal biotransformation of the ginseng product.

한국산 수삼의 재배환경(논, 밭)에 따른 식물화학성분 비교 (Comparison of Phytochemical Constituents According to the Cultivation Method (Paddy Field Cultivation, Upland Field Cultivation) of Korean Fresh Ginseng)

  • 허재영;김도형;황유진;고성권;양병욱
    • 한방비만학회지
    • /
    • 제22권1호
    • /
    • pp.21-29
    • /
    • 2022
  • Objectives: This study aimed to examine the changes in ingredients according to its cultivation method by examining the content of saponin and non-saponin components of ginseng. Methods: Ginseng saponin component analysis was compared and reviewed using the high-performance liquid chromatography method, and acidic polysaccharide component was measured using the carbazole sulfuric acid method. Results: The comparative analysis of ginseng saponin content of 4 and 6 years old fresh ginseng showed the following results. According to the cultivation method, upland field cultivation fresh ginseng showed higher average content of crude saponin than paddy field cultivation fresh ginseng. Whereas, paddy field cultivation fresh ginseng showed higher average content of total saponin than upland field cultivation fresh ginseng. Ginsenoside Rb1 showed higher content of paddy field cultivation fresh ginseng than upland field cultivation fresh ginseng in 6 years old ginseng. However, it showed higher content of upland field cultivation fresh ginseng than paddy field cultivation fresh ginseng in 4 years old ginseng. Additionally, ginsenoside Rg1 showed higher content of paddy field cultivation fresh ginseng than upland field cultivation fresh ginseng in 6 years old ginseng, whereas upland field cultivation fresh ginseng showed higher content of paddy field cultivation fresh ginseng in 4 years old ginseng. The effect on the content of ginseng saponins and acidic polysaccharides according to paddy field and upland field cultivation methods is considered to be small. Conclusions: The paddy field cultivation method, which is more efficient in production cost due to depletion of farmland and long-distance cultivation, is considered to be an economical cultivation method.

Effects of Ginsenosides Injected Intrathecally or Intracerebroventricularly on Antinociception Induced by D-$Pen^{2,5}$-enkephalin Administered Intracerebroventricularly in the Mouse

  • Hong-Won Suh;Don
    • Journal of Ginseng Research
    • /
    • 제21권2호
    • /
    • pp.109-114
    • /
    • 1997
  • The effect of total saponin fraction of Ginseng injected intrathecally (i.1.) or in- tracerebroventricularly (i.c.v.) on the antinociception induced by D-$Pen^{2,5}$- enkephalin (DPDPE) ad ministered i.c.v. was studied in ICR mice in the present study. The antinociception was assessed by the tail-flick test. Total saponin fraction at doses 0.1 to 1.0 $\mu\textrm{g}$, which administered i.t. Alone did not affect the latencies of tail-flick threshold, attenuated dose-dependently the inhibition of the tail-flick response induced by i.c.v. administered DPDPE (10 $\mu\textrm{g}$). However, total saponin fraction at doses 1 to 20 $\mu\textrm{g}$, which administered i.c.v. Alone did not affect the latencies of the tail-flick response, did not affect i.c.v. administered DPDPE (10 $\mu\textrm{g}$)-induced antinociception. The duration of antagonistic action of total saponin fraction against DPDPE-induced antlnociception was lasted at least for 6 hrs. Various doses of ginsenosides Rd, but not $\Rb_2$, Rc, Rg1, and $\Rb_1$ and Re, injected i.t. Dose-dependently attenuated antinociception induced by DPDPE administered i.c.v. Our results indicate that total saponin fraction injected spinally appears to have antagonistic action against the antinociception induced by supraspinally applied DPDPE. Ginsenoside Rd appears to be responsible for blocking j.c.v. administered DPDPE-induced antinociception. On the other hand, total ginseng fraction, at supraspinal sites, may not have an antagonistic action against the antinociception induced by DPDPE.

  • PDF