• Title/Summary/Keyword: ginsenoside F2

Search Result 134, Processing Time 0.024 seconds

Analysis of Immunomodulating Gene Expression by cDNA Microarray in $\beta$-Glucan-treated Murine Macrophage

  • Sung, Su-Kyong;Kim, Ha-Won
    • Proceedings of the Korean Society of Applied Pharmacology
    • /
    • 2003.11a
    • /
    • pp.98-98
    • /
    • 2003
  • ${\beta}$-(1,3)-D-Glucans have been known to exhibit antitumor and antimicrobial activities. The presence of dectin-1,${\alpha}$, ${\beta}$-glucan receptor of dendritic cell, on macrophage has been controvertial. RT-PCR analysis led to the detection of dectin-1${\alpha}$ and ${\beta}$ in murine macrophage Raw264.7 cell line. Among the various organs of mouse, dectin-1${\alpha}$ and ${\beta}$ were detected in the thymus, lung, spleen, stomach and intestine. To analyze gene expression modulated by ${\beta}$-glucan treated murine Raw264.7 macrophage, total mRNA was applied to cDNA microarray to interrogate the expression of 7,000 known genes. cDNA chip analysis showed that ${\beta}$-glucan of P. osteatus increased gene expressions of immunomodulating genes, membrane antigenic proteins, chemokine ligands, complements, cytokines, various kinases, lectin associated genes and oncogenes in Raw 264.7 cell line. When treated with ${\beta}$-glucan of P. osteatus and LPS, induction of gene expression of TNF-${\alpha}$ and IFN-R1 was confirmed by RT-PCR analysis. Induction of TNF-R type II expression was confirmed by FACS analysis. IL-6 expression was abolished by EDTA in ${\beta}$-glucan and LPS treated Raw264.7 cell line, indicating that ${\beta}$-glucan binds to dectin-l in a Ca$\^$++/ -dependent manner. To increase antitumor efficacy of ${\beta}$-glucan, ginsenoside Rh2 (GRh2) was co-treated with ${\beta}$-glucan in vivo and in vitro tests. IC$\sub$50/ values of GRh2 were 20 and 25 $\mu\textrm{g}$/$m\ell$ in SNU-1 and B16 melanoma F10 cell line, respectively. Co-treatment with ${\beta}$-glucan and GRh2 showed synergistic antitumor activity with cisplatin and mitomycin C both in vitro and in vivo. Single or co-treatment with ${\beta}$-glucan and GRh2 increased tumor bearing mouse life span. Co-treatment with ${\beta}$-glucan and GRh2 showed more increased life span with mitomycin C than that with cisplatin. Antitumor activities were 67% and 72 % by co-injection with ${\beta}$-glucan and GRh2 in the absence or presence of mitomycin C, respectively.

  • PDF

Dynamic changes of multi-notoginseng stem-leaf ginsenosides in reaction with ginsenosidase type-I

  • Xiao, Yongkun;Liu, Chunying;Im, Wan-Teak;Chen, Shuang;Zuo, Kangze;Yu, Hongshan;Song, Jianguo;Xu, Longquan;Yi, Tea-Hoo;Jin, Fengxie
    • Journal of Ginseng Research
    • /
    • v.43 no.2
    • /
    • pp.186-195
    • /
    • 2019
  • Background: Notoginseng stem-leaf (NGL) ginsenosides have not been well used. To improve their utilization, the biotransformation of NGL ginsenosides was studied using ginsenosidase type-I from Aspergillus niger g.848. Methods: NGL ginsenosides were reacted with a crude enzyme in the RAT-5D bioreactor, and the dynamic changes of multi-ginsenosides of NGL were recognized by HPLC. The reaction products were separated using a silica gel column and identified by HPLC and NMR. Results: All the NGL ginsenosides are protopanaxadiol-type ginsenosides; the main ginsenoside contents are 27.1% Rb3, 15.7% C-Mx1, 13.8% Rc, 11.1% Fc, 7.10% Fa, 6.44% C-Mc, 5.08% Rb2, and 4.31% Rb1. In the reaction of NGL ginsenosides with crude enzyme, the main reaction of Rb3 and C-Mx1 occurred through Rb3${\rightarrow}$C-Mx1${\rightarrow}$C-Mx; when reacted for 1 h, Rb3 decreased from 27.1% to 9.82 %, C-Mx1 increased from 15.5% to 32.3%, C-Mx was produced to 6.46%, finally into C-Mx and a small amount of C-K. When reacted for 1.5 h, all the Rb1, Rd, and Gyp17 were completely reacted, and the reaction intermediate F2 was produced to 8.25%, finally into C-K. The main reaction of Rc (13.8%) occurred through Rc${\rightarrow}$C-Mc1${\rightarrow}$C-Mc${\rightarrow}$C-K. The enzyme barely hydrolyzed the terminal xyloside on 3-O- or 20-O-sugar-moiety of the substrate; therefore, 9.43 g C-Mx, 6.85 g C-K, 4.50 g R7, and 4.71 g Fc (hardly separating from the substrate) were obtained from 50 g NGL ginsenosides by the crude enzyme reaction. Conclusion: Four monomer ginsenosides were successfully produced and separated from NGL ginsenosides by the enzyme reaction.

Effects of Neutral Dammarane Saponin from Panax ginseng on the in vitro Function of Polymorphonuclear Leukocytes (인삼의 중성 Dammarane계 사포닌의 다형핵 백혈구 기능에 미치는 영향)

  • Bridges Raymond B.;Park Ki Hyun;Han Byung Hoon;Han Yong Nam;Chung Soo Il
    • Proceedings of the Ginseng society Conference
    • /
    • 1988.08a
    • /
    • pp.115-121
    • /
    • 1988
  • Although Saponin A from Panax ginseng has previously been shown to inhibit carageenin induced edema. a paucity of information exists on the effects of components from ginseng on the cellular inflammatory response. specifically polymorphonuclear leukocyte (PMNL) function. The purpose of this study was 10 determine the effects of isolated neutral dammarane saponins from ginseng (i.e..glycosidic derivatives of 20(S)-protopanaxadiol [ginsenoside $Rb_1,\;Rb_2$ and Rc] and 20(S)-protopanaxatriol [ginsenosides Re and $Rg_1$]) on in vivo PMNL function and to compare their effects with those produced by a steroidal anti-inflammatory agent (dexamethasone) and commercially available saponin. Dexamethasone. the ginsenosides and saponin were all shown to he potent inhibitors of PMNL chemotaxis using the $^{51}Cr$ assay with $5{\times}10^{-8}M$ f-met-leu-phe [FMLP] as the chemoattractant. Inhibition or PMNL chemotaxis by dexamethasone. the ginsenosides and saponin were all shown to be both time-and dose-dependent and these agents did not affect cellular viability at the concentrations tested Saponin and the ginsenosides were more potent inhibitors of chemotaxis than was dexamethasone. while oxidant generation (as measured by the luminol-enhaneed chemil-uminescence of PMNL using FMNL $[10^{-6}]$ as the stimulus) was inhibited by dexamethasone. the ginsenosides $(Rb_1\;Rb_2\;Rc\;Re\;and\;Rg_1)$ and saponin at a concentration of 1 ${\mu}M$ had no significant effect on PMNL chemiluminescence. Thus. the neutral dammarane saponins are potentially important modulators or PMNL function and their inhibitory effects may he differentiated from those of the Steroidal anti-inflammatory agents.

  • PDF

Quantitative Microbial Risk Assessment Model for Staphylococcus aureus in Kimbab (김밥에서의 Staphylococcus aureus에 대한 정량적 미생물위해평가 모델 개발)

  • Bahk, Gyung-Jin;Oh, Deog-Hwan;Ha, Sang-Do;Park, Ki-Hwan;Joung, Myung-Sub;Chun, Suk-Jo;Park, Jong-Seok;Woo, Gun-Jo;Hong, Chong-Hae
    • Korean Journal of Food Science and Technology
    • /
    • v.37 no.3
    • /
    • pp.484-491
    • /
    • 2005
  • Quantitative microbial risk assessment (QMRA) analyzes potential hazard of microorganisms on public health and offers structured approach to assess risks associated with microorganisms in foods. This paper addresses specific risk management questions associated with Staphylococcus aureus in kimbab and improvement and dissemination of QMRA methodology, QMRA model was developed by constructing four nodes from retail to table pathway. Predictive microbial growth model and survey data were combined with probabilistic modeling to simulate levels of S. aureus in kimbab at time of consumption, Due to lack of dose-response models, final level of S. aureus in kimbeb was used as proxy for potential hazard level, based on which possibility of contamination over this level and consumption level of S. aureus through kimbab were estimated as 30.7% and 3.67 log cfu/g, respectively. Regression sensitivity results showed time-temperature during storage at selling was the most significant factor. These results suggested temperature control under $10^{\circ}C$ was critical control point for kimbab production to prevent growth of S. aureus and showed QMRA was useful for evaluation of factors influencing potential risk and could be applied directly to risk management.