• Title/Summary/Keyword: ginseng-field soil

Search Result 182, Processing Time 0.036 seconds

Establishment of the Suitability Class in Ginseng Cultivated Lands (인삼 재배 적지 기준 설정 연구)

  • Hyeon, Geun-Soo;Kim, Seong-Min;Song, Kwan-Cheol;Yeon, Byeong-Yeol;Hyun, Dong-Yun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.6
    • /
    • pp.430-438
    • /
    • 2009
  • An attempt was made to establish the suitability classes of lands for the cultivation of ginseng(Panax ginseng C. A. Meyer). For this study, the relationships between various soil characteristics and ginseng yields were investigated on altogether 450 ginseng fields (150 sites in paddy and 300 sites in upland), across Kangwon, Kyunggi, Chungbug, Chungnam, Jonbug and Kyungbug Provinces, where ginseng is widely cultivated. In the paddy fields, most influential properties of soil on the ginseng yields was found to be the drainage class. Texture of surface soil and available soil depths affected the ginseng yields to some extents. However, the topography, slope, and the gravel content were found not to affect the ginseng yields. In the uplands, the texture of surface soil was most influential and the topography, slope, and occurrence depth of hard-pan were least influential on the performance of the crop. Making use of multiple regression, by SAS, the contribution of soil morphological and physical properties such as, topography, surface soil texture, drainage class, slope, available soil depth, gravel content, and appearance depth of hard-pan, for the suitability of land for ginseng cultivation was analyzed. Based on the results of above analysis, adding up all of the suitability indices, land suitability classes for ginseng cultivation were proposed. On top of this, taking the weather conditions into consideration, suitability of land for ginseng cultivation was established in paddy field and in uplands. As an example, maps showing the distribution of suitable land for ginseng cultivation were drawn, adopting the land suitability classes obtained through current study, soil map, climate map, and GIS information, for Eumsung County, Chungbug Province. Making use of the information on the land suitability for ginseng cultivation obtained from current study, the suitability of lands currently under cultivation of ginseng was investigated. The results indicate that 74.0% of them in paddy field and 88.3% in upland are "highly suitable" and "suitable".

Growth Characteristics of Ginseng Seedling Transplanting by Self Soil Nusery, Nursery or Hydroponic Culture on Main Field (토직, 상토 및 양액육묘에 의해 생산된 묘삼의 본포 이식 후 생장특성)

  • Park, Hong Woo;Song, Jeong Ho;Kwon, Ki Bum;Lee, Ueong Ho;Son, Ho Jun
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.4
    • /
    • pp.238-243
    • /
    • 2017
  • Background: The production method of ginseng seedlings for ginseng cultivation is very important to ensure healthy rooting system as well as high quality, and yield of the resultant plants. This study was carried out to compare the growth characteristics of 2-year-old ginseng plants that were produced from seedlings grown in self soil nursery (SSN), nursery soil (NS) or hydroponic culture (HC). Methods and Results: The shading prop used was composed of four-layered 4 polyethylene (blue 3 + black 1) shade screen. The management of main field was done by inserting oil cake (1,200 kg/10 a) and then allowing Sudan grass to grow for a year. Seedling transplantation was carried out on April 6. Root growth was measured on October 25. Root weight was observed to be excellent at 6.0 g, following SSN transplantation. Root length was 21.2 cm for HC seedlings, but these plants had a physiological disorder (i.e., rusty root), in 83.5% plants of this treatment. The ratio of PD/PT (protopanaxadiol saponins / protopanaxatriol saponins) was higher in NS seedlings. Plant analysis revealed that Fe content was lower in HC seedlings with high rustiness. The growth of 2-years-old ginseng was different following these varying seedling cultivation methods, but seedlings from NS were not different from those grown in SSN. Conclusions: For the propagation of 2-year-old ginseng plants, NS seedlings may be a good substitute for SSN seedlings.

Effect of Metalaxyl on Controlling Phytophthoyra Disease of Korea Ginseng (인삼역병에 대한 Metalalryl의 방제효과)

  • 유연현;오승환
    • Journal of Ginseng Research
    • /
    • v.9 no.2
    • /
    • pp.163-169
    • /
    • 1985
  • The efficacy of fungicides was compared for control of root rot as well as leaf blight caused by Phytophthora cactorum on ginseng plants. Growth of P. cactorum in rlitro was completely or highly inhibited by metalaxyl, tetracyclin, captafol, carbendazim, and thiophanate + thiram. In field trials, the disease was significantly reduced not only in the root rot but also in the leaf blight when metalaxyl was applied at 4.17 mg a.i. per plant for soil drenching and 1.25 mg a.i. for foliage application. Also captafol was effective on control of the leaf blight but its effect was inferior to that of metalaxyl. Metalaxyl lost its effectiveness in vivo between the 5th and 7th week after soil wren ching. Phytotoxicity was, however, observed on 2 years old ginseng plants when metalaxyl was drenched at 8 mg a.i. while no phytotoxic symptom was developed on 2 years old ginseng plants at 4k mg a.i. and 3 years old at 16 mg a.i. per plant, respectively.

  • PDF

Effects of Organic Materials on Soil Organisms in a Korean Ginseng Field (인삼재배지 유기물 시용이 토양미생물과 미소동물에 미치는 영향)

  • Eo, Jin-U;Park, Kee-Choon;Lee, Sung-Woo;Bae, Yeoung-Seuk;Yeon, Byung-Ryul
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.43 no.2
    • /
    • pp.188-193
    • /
    • 2010
  • The aim of this study is to evaluate the effects of organic materials on soil organisms. Changes in the community structure, and population density of soil organisms (microbes, nematodes, and microarthropods) were studied in a Korean ginseng field. Phospholipid fatty acids analysis showed that the relative abundances of bacteria, fungi, and actinomycetes did not differ significantly. The aerobes/anaerobes ratio was the lowest in soils amended with leaf mold, indicating that the decomposition speed was slow. Further, the addition of leaf mold to the soil enhanced the saturated/monounsaturated fatty acid ratio and cyclopropyl fatty acid/precursor ratio, which indicated an increase in environmental stresses. Application of pig manure compost (PMC) had positive effects on the population density of nematodes, and negative effects on that of oribatid mites. The population densities of nematodes, and microarthropods remained relatively low in the plots that had been treated with leaf mold or pig manure compost. It is suggested that pre-planting soil management directed at enhancing the biological decomposition efficiency should be continued over a long period to increase the soil bioactivity in virgin soils.

Growth of Panax ginseng Affected by the Annual Change in Physico-chemical Properties of Ginseng Cultivated Soil (연근별 토양이화학성이 인삼의 생육에 미치는 영향)

  • 이일호;박찬수;송기준
    • Journal of Ginseng Research
    • /
    • v.13 no.1
    • /
    • pp.84-91
    • /
    • 1989
  • This study was conducted to Investigate the effects of physico-chemical soil properties on the growth and yield of ginseng. 1 In the field survey, the yields of 6 year old ginseng were 2.46 Kg/3.3$m^2$, 2.13 Kg/3.3$m^2$, 1.44 Kg/3.3 $m^2$ in clay loam, loam and sandy loam soils, respectively 2. The missing plant rate for il year old ginseng were 33.6% and 51.6% in clay loam and sandy loam soils, respectively : the stem length and stem diameter of ginseng plants in sandy loam soil were smaller than those in clay loam soil. 3. Soil aggregation and porosity we're slightly higher in 6 year old ginseng fields than in 2 year ones. 4. Inorganic-N increased in 2 year and 3 year old ginseng fields reaching up to 100-120ppm, however it 1 decreased to 75 ppm, 34 ppm and 25 ppm in 4, 5 and 6 year old ginseng fields, respectively, It varied 1 more greatly in sandy loam soil than in clay loam. 5. The $P_2O_5$, K, Ca, and Mg contents differed little with plant age. Sandy loam had high N and $P_2O_5$ contents but low cation contents. 6. The yield of 6 year old ginseng fields were significantly correlated with clay contents and porosity. The missing Plant rate of 6 year old ginseng had a positive correlations with sand. and N contents.

  • PDF

Effects of Soil Microbial Agent with Red Ginseng Marc on Growth of Watermelon -A Field Study- (홍삼박을 활용한 토양미생물제제가 수박의 생육에 미치는 영향 -현장연구를 중심으로-)

  • Ryu, Hyo-Seung;Lee, Jong-Wha;Kim, Chang-Man;Choi, In-Hag
    • Journal of Environmental Science International
    • /
    • v.24 no.12
    • /
    • pp.1705-1710
    • /
    • 2015
  • The aim of the present study was to determine the effects of soil microbial agent with red ginseng marc on growth of watermelon during 5 months. The three treatments were distributed in a completely randomized design with four replicates per plot. After 1 week in planting dates, the growth of watermelon (full length, stem thichness, leaf length and lead width) showed no significant difference in all treatments. During elongation stage (20 days), soil microbial agent with red ginseng marc was increased by 5% in leaf thickness (May 23) and 7~14% in leaf length (May 16 and 23) when compared to other treatments. For changes in fruit bearing thickness, there were no differences among treatments. Characteristics of watermelon in harvest season have an effect on harvest and length, stalk length, naval length, weight, sugar content and yield, except for harvest and width. In particular, yields increased with treatments with two soil microbial agent (7~12%), indicating that soil microbial agent with red ginseng marc showed higher yield than the other treatments. In conclusion, red ginseng marc-treated soil microbial agents have a positive effect on the harvest season of watermelon and can provide useful information for the selection of the functional microbial properties and the registration of microbial fertilizer.

Grouping the Ginseng Field Soil Based on the Development of Root Rot of Ginseng Seedlings (유묘 뿌리썩음병 진전에 따른 이산재배 토양의 유별)

  • 박규진;박은우;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.37-45
    • /
    • 1997
  • Disease incidence (DI), pre-emergence damping-off (PDO), days until the first symptom appeared (DUS), disease progress curve (DPC), and area under disease progress curve (AUDPC) were investigated in vivo after sowing ginseng seeds in each of 37 ginseng-cultivated soils which were sampled from 4 regions in Korea. Non linear fitting parameters, A, B, K and M, were estimated from the Richards' function, one of the disease progress models, by using the DI at each day from the bioassay. Inter- and intra-relationships between disease variables and stand-missing rate (SMR) in fields were investigated by using the simple correlation analysis. Disease variables of the root rot were divided into two groups: variables related to disease incidence, e.g., DI, AUDPC and A parameter, and variables related to disease progress, e.g., B, K and M parameters. DI, AUDPC, and DUS had significant correlations with SMR in ginseng fields, and then it showed that the disease development in vivo corresponded with that in fields. Soil samples could be separated into 3 and 4 groups, respectively, on the basis of the principal component 1 (PC1) and the principal component 2 (PC2), which were derived from the principal component analysis (PCA) of Richards' parameters, A, B, K and M. PC1 accounted for B, K and M parameters, and PC2 accounted for A parameter.

  • PDF

Effects of Soil Moisture and Planting Depth on the Growth of 2-year Old Ginseng Plant (Panax ginseng C. A. Meyer) (토양수분(土讓水分) 및 재식심도(栽植深度)가 저년근(低年根) 고려인삼(高麗人蔘)의 생육(生育)에 미치는 영향(影響))

  • Lee, Jong Chul;Mok, Seong Kyun;Lee, Jong Wha;Jo, Jae Seong
    • Korean Journal of Agricultural Science
    • /
    • v.10 no.2
    • /
    • pp.235-241
    • /
    • 1983
  • This experiment was conducted to determine the effect of soil moisture content and planting depth on the growth of 2-year old ginseng plant. The results obtained are summarized as follows; 1. When the ginseng seedlings were planted in soil by 4 to 5cm in depth, the length of leaflet and stem and the number of branch roots were significantly decreased but the stem diameter was increased. 2. Highly significant quadratic regressions were shown between soil moisture content and the growth of the stem, leaf and root of the ginseng plant. 3. Estimated amount of soil moisture for the maximum growth of the stem was 75% of field capacity, and that for length and width of the leaflet was about 65 to 66% of field capacity. Estimated soil moisture for the maximum growth of the root was about 56 to 58% of field capacity and that for increase in root weight was about 60 to 61% of field capacity. 4. Estimated soil moisture content for best growth of ginseng roots was 1 to 5% lower when the seedling was planted in 3cm depth compared with 2cm in depth. And when the amount of soil moisture was 31% of field capacity, the deep planting was adequate for good root growth. 5. Significant correlations were resulted between the dry weight of roots and the leaf length, the leaf width and the dry weight of stem and leaves. And also, significant correlations were obtained between the ratio of root dry weight to root fresh weight and the stem length, the leaf length, the leaf width and the dry weight of stem and leaves.

  • PDF

Changes in Growth Characteristics, Biological Activity and Active Compound Contents in Ginseng of Different Ages (재배년수에 따른 인삼의 생육특성, 생리활성, 성분의 변화)

  • Moon, Ji Won;Jang, In Bae;Yu, Jin;Jang, In Bok;Seo, Su Jeoung;Lee, Sung Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.27 no.6
    • /
    • pp.383-389
    • /
    • 2019
  • Background: Ginseng has been used as a medicine and functional food since ancient times. It is a perennial crop, and its whose commercial valuse increases with growing period and is affected by the atmosphere and soil environment. Methods and Results: In a selected field, we measured air temperature under a shade structure and soil physicochemical properties, and determied plant and root growth as well as ginsenoside and total polyphenol content of one- to five-year-old ginsengs plants. Although air temperature above 30℃ was recored for more than 37 days, no marked growth inhibition of ginseng was detected. Among all soil physicochemical properties, except for pH, were within the allowable range the shortage increases with ginseng years. In five-year-old ginseng, the quantity is about 9.7% higher than the average weight by standard, indicating that is not affected by temperature when grown under a shade structure. Three-year-old ginseng contained the highest total ginsenoside and total polyphenol levels and exhibited the greatest DPPH radical scavenging activity. Conclusions: The total ginsenoside and protopanaxadiol/protopanaxatriol ratio were both low at five-year-old ginseng plants, which was attributed to rapid growth of the root system in five-year-oid plants. There were no significant differences in total polyphenol content and antioxidant activity between.