• Title/Summary/Keyword: ginseng-field soil

Search Result 182, Processing Time 0.025 seconds

Effect of the Application of Several Organic Materials on Ginseng Growth (수종유말물 시용이 인삼생육에 미치는 영향)

  • 이일호;박찬수
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.427-431
    • /
    • 1990
  • To search for substituents of greens, several organic materials such as rice straw, barley straw, corn stem and manufactured compost were applied in a ginseng cultivating field. The yields of six year old ginseng harvested in the rice straw, barley strait and corn stem treated field were similar to or higher than that of the greens treated one. The varied amount of applied substituents resulted in a yield change, but statistical linearity was not found. The growth of ginseng aerial part and soil physicochemical property in the field fortified with these substituents showed similar results to those of the greens treated one. So, it is though that these organic materials can substitute for greens.

  • PDF

Population Variations of Cylindrocarpon destructans Causing Root Rot of Ginseng and Soil Microbes in the Soil with Various Moisture Contents (토양수분 함량에 따른 인삼 뿌리썩음병균 Cylindrocarpon destructans 및 토양미생물의 밀도 변화)

  • 박규진;유연현;오승환
    • Korean Journal Plant Pathology
    • /
    • v.13 no.2
    • /
    • pp.100-104
    • /
    • 1997
  • Influence of the moisture content in soils was examined on population variations of soil microbes, including Cylindrocarpon destructans causing root rot of ginseng, in vivo and under the field condition. Fungal populations decreased in soils treated with various moisture contents in vivo as days after the treatment in creased, but there was not a significant difference in the population among other treatments except 135% moisture content (flooding) at 15 weeks after the treatment. In flooded soils populations of total fungi and C. destructans were reduced to 1/10 and 1/50 of initial populations, respectively. There was, however, a little difference in the population of total bacteria or Actinomycetes between before and at 15 weeks after flooding. On the other hand, population variations of bacteria and Actinomycetes were much greater than those of fungi at different intervals after the moisture treatment. Variations of microbial populations in flooded soils under the field condition were similar to those in vivo. Especially, populations of Fusarium and pectolytic bacteria in flooded soils were reduced to 1/100 of populations in nonflooded soils at 170 days after treatment.

  • PDF

Effects of Aphelenchus avenae on Suppression of Soilborne Diseases of Ginseng (Aphelenchus avenae에 의한 인산 토양병의 억제효과)

  • 김영호
    • Korean Journal Plant Pathology
    • /
    • v.10 no.4
    • /
    • pp.319-324
    • /
    • 1994
  • The monoxenic culture of the fungivorous nematode, Aphelenchus avenae, was applied for the control of soil-borne ginseng pathogens such as Fusarium solani and Rhizoctonia solani. Fungivorous nematode populations were measured in a field to examine relationships between the nematode populations and suppression of ginseng root diseases. Inoculation of A. avenae (5000 nematodes per petri-dish) reduced the colonization of the Fusarium mycelium on root discs of ginseng and carrot by 80.0% and 60.5%, respectively. A. avenae also significantly reduced the occurrence of damping-off of ginseng by R. solani pathogenic to ginseng, and no plant damage by the nematode was noted. In a 3-year-old ginseng field infested with Cylindrocarpon destructans, plant missing caused by root rot positively correlated to the density of potato rot nematode, Ditylenchus destructor, but it was reduced with the population of A. avenae, suggesting that A. avenae might inhibit the occurrence of ginseng root rot.

  • PDF

Effect of Nutritional Environment in Ginseng Field on the Plant Growth of Ginseng (Panax ginseng C. A. Meyer) (인삼재배지의 영양환경이 인삼의 생육에 미치는 영향)

  • Jin, Hyun-O;Kim, Ung-Jin;Yang, Deok-Chun
    • Journal of Ginseng Research
    • /
    • v.33 no.3
    • /
    • pp.234-239
    • /
    • 2009
  • This study aims to establish the directions for the optimal nutrient contents determined by soil and leaf analyses. The study is to be used as a source for basic information in investigating the effects of nutritional environment on ginseng growth at the fields of Ansung region in Gyeonggi province. The physical property of soil porosity is closely related to ginseng growth, with more than 50% of good growth in the field. The optimal range of chemical properties in soil was analyzed as 0.20-0.28% T-N, 500-900 mg/kg Av.P$_2$O$_5$, and 2.3-3.5 cmol$^+$/kg Exch.Ca. The optimal range of inorganic nutrient contents in leaves was also analyzed. P value was less than 0.25%, and Mg was more than 0.22%. Other elements were not found clearly. The ratios of N/P, N/Mg, K/Mg, and Ca/P of leaves with good growth in the field showed 10<, 10-13, <14, 1<, respectively. In addition, the Ca:Mg:K ratio of the Exch.cation (cmol$^+$/kg) may be useful as an indicator in the assessment of plant growth in ginseng.

Biological Control of Postharvest Root Rots of Ginseng (수확 후 인삼뿌리썩음병의 생물학적 방제)

  • 정후섭;정은선;이용환
    • Korean Journal Plant Pathology
    • /
    • v.14 no.3
    • /
    • pp.268-277
    • /
    • 1998
  • The production of Korean ginseng, one of the most important medicinal root crops, is limited by many factors including soil sickness, root rots in fields as well as during storage prior to consumption. Although much research has been conducted on the diseases in field condition, little information is available on the control of postharvest roots rots. To obtain better management strategy of postharvest root rots in ginseng, biological control using antagonistic bacteria was attempted. Of 208 bacteria obtained form suppressive soil samples, 4 were selected based on the inhibitory effect on mycelial growth of two major causal fungi for postharvest root rots in ginseng, Botrytis cinerea and Fusarium solani. The culture filtrates of these bacterial antagonists greatly inhibited the conidial germination of both pathogenic fungi and produced abnormal morphology such as swollen germ tubes in F. solani and vacuolation of nongerminated conidia in B. cinerea. The population levels of bacterial antagonists on the ginseng roots were gradually increased up to 8 days of incubation. Postharvest root rots of ginseng caused by f. solani and B. cinerea were controlled in dipping tests in the ranges of 60∼80% by antagonistic Bacillus spp. obtained from suppressive soil. These results suggest that biological control using these antagonistic bacteria would be an alternative strategy to control postharvest root rots in ginseng.

  • PDF

Effect of Green Manure Crop Cultivation on Soil Chemical Properties and Root Rot Disease in Continuous Cropping Field of Ginseng (녹비작물 재배가 토양화학성 및 인삼뿌리썩음병 발생에 미치는 영향)

  • Lee, Sung Woo;Park, Kyung Hoon;Lee, Seung Ho;Jang, In Bok;Jin, Mei Lan
    • Korean Journal of Medicinal Crop Science
    • /
    • v.25 no.1
    • /
    • pp.1-9
    • /
    • 2017
  • Background: Some plants have harmful effects on fungi and bacteria as well as other plants. Incorporating such plant into soil as green manure is effective in reducing population densities of soil pathogens. Methods and Results: Twenty-three species of green manure crops were cultivated after the harvest of 6-year-old ginseng and then incorporated into the soil at the flowering stage. The following year, the root rot ratio of 2-year-old ginseng and soil chemical properties were investigated. In the absence of green manure addition, the $NO_3$ content, electric conductivity (EC), and K content decreased by 95%, 79% and 65%, respectively. In the presence of green manure addition, $P_2O_5$ and $NO_3$ contents reduced by 41% and 25%, respectively. The "survived root ratio" of 2-year-old ginseng significantly increased by 56.2%, 47.5%, and 47.3%, in the Sorghum sudanense, Ricinus communis and Helianthus tuberosus treatment, respectively. In addition, there was a significant increase in the "survived root ratio" in the Secale cereale, Chrysanthemum morifolium, Atractylodes macrocephala, and Smallanthus sonchifolius treatments. The "survived root ratio" of ginseng showed a significant positive correlation with the soil pH and a negative correlation with the $NO_3$ contents, and EC. Conclusions: Cultivation of plant form the Chrysanthemum family as green manure, using mainly the rhizomes was effective for the control of root rot disease of ginseng.

The Analysis of Reduction Efficiency of Soil Erosion and Sediment Yield by a Ginseng Area using GIS Tools

  • Lee, Geun-Sang;Jeon, Dae-Youn
    • Spatial Information Research
    • /
    • v.17 no.4
    • /
    • pp.431-443
    • /
    • 2009
  • Recently, turbidity problem is one of the hot issues in dam and reservoir management works. Main reason to bring about high density turbid water is sediment yield by rainfall intensity energy. Because existing researches didn't consider diverse types of crops, it was difficult to calculate more accurate soil erosion and sediment yield. This study was evaluated the reduction efficiency of soil erosion and sediment yield using ginseng layer extracted from IKONOS satellite image, and the area and the ratio of ginseng area represented $0.290km^2$ and 0.94%. The reduction efficiency of soil erosion considering ginseng area represented low value in 0.9% using GIS-based RUSLE model, because the area of ginseng was small compared to areas of other agricultural lands. To reflect future land use change, this study was calculated the reduction efficiency of soil erosion and sediment yield by considering many scenarios as kinds of crops of paddy, dry field, orchard, and other agricultural areas convert to the ginseng district. As result of analysis of them according to scenarios, scenario (1) in which dry field was converted to ginseng area and scenario (2) in which fully agricultural lands were converted to ginseng area showed high reduction efficiency as 31.3% and 34.8% respectively, compared to existing research which didn't consider ginseng area. Methodology suggested in this study will be very efficient tools to help reservoir management related to high density turbid water.

  • PDF

Comparison of Growth Characteristics and Ginsenosides Content of 6-Year-Old Ginseng (Panax ginseng C. A. Meyer) by Drainage Class in Paddy Field (논토양에서 배수등급별 6년근 인삼의 생육특성 및 진세노사이드 함량 비교)

  • Lee, Sung-Woo;Park, Jin-Myeon;Kim, Geum-Soog;Park, Kee-Choon;Jang, In-Bok;Lee, Seung-Ho;Kang, Seung-Won;Cha, Seon-Woo
    • Korean Journal of Medicinal Crop Science
    • /
    • v.20 no.3
    • /
    • pp.177-183
    • /
    • 2012
  • To develop the practical cultivation for paddy field, we investigated the properties of paddy soil, growth characteristics and ginsenoside content of 6-year-old ginseng, Cheonpung variety between poor drainage class (PDC) and imperfect drainage class (IDC). Groundwater level in PDC showed monthly small changes of 20~30 cm, while IDC showed monthly great changes of 28~71 cm depending on rainfall. Soil moisture content in PDC and IDC was 17.2%, 22.5%, respectively. Air temperature in IDC was lower than $0.3^{\circ}C$, while soil temperature was higher than $0.8^{\circ}C$ compare to PDC, respectively. Main soil color of PDC was grayish olive, while IDC was brownish olive. PDC showed yellowish mottles only at underground of 20~40 cm, while IDC showed that at underground of 30~90 cm. IDC showed lower pH, EC, potassium, calcium and magnesium content, but higher organic matter, phosphate, and iron content than that of PDC, respectively. All of EC, organic matter, potassium, calcium, and magnesium content were decreased, but iron content was increased at the subsoil layers of PDC. All of EC, organic matter, phosphorus, and potassium content were decreased, but calcium and magnesium content were increased at the subsoil layers of IDC. Root yield in IDC was more increased by 33% than that of PDC. The moisture content and rusty ratio of ginseng root in IDC were lower than that of PDC. Ginsenoside content in IDC was higher than that of PDC because the ratio of lateral and fine root showing relatively high content of ginsenoside was higher in IDC than that of PDC.