• Title/Summary/Keyword: ginseng-field soil

Search Result 182, Processing Time 0.026 seconds

Characteristics of Soil Groups Basd on the Development of Root Rot of Ginseng Seedlings (인삼 유묘 뿌리썩음병 진전에 따른 토양군별 특성)

  • 박규진;정후섭
    • Korean Journal Plant Pathology
    • /
    • v.13 no.1
    • /
    • pp.46-56
    • /
    • 1997
  • Based on the principal component analysis (PCA) of Richards' parameter estimates, ginseng field soils were grouped as the principal component 1 (PC1) and the principal component 2 (PC2). The microflora and physico-chemical characteristics of each soil group were compared to elucidate soil environmental factors affecting the disease development of root rot of ginseng seedling. Among 3 soil groups by PC1, there were differences in the populations of total fungi (TF) and Cylindrocarpon plus Fusarium (C+F), and the population ratio of Cylindrocarpon plus Fusarium to total fungi or total bacteria (C+F/TF, C+F/TB) in rhizoplane of ginseng seedlings, the population of total actinomycetes (TA) and the population ratio of total Fusarium to total actinomycetes (Fus/TA) in soil, and soil chemical properties (EC, NO3-N, K, Mn, ect.). Among 4 soil groups by PC2, there were differences in TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane, Trichoderma plus Gliocladium (T+G) in soil, and P2O5 content in soil. Especially, EC, NO3-N, K, K/Mg and Mn were positively correlated to PC1, and TA was negatively to PC1; however, TF, C+F, TB, C+F/TF and C+F/TB in the rhizoplane were significantly correlated to PC2 positively. On the other hand, microbes in the rhizoplane were not significantly correlated to the stand-missing rate (SMR), although TA and Fe/Mn were negatively correlated, and pH and Ca were positively correlated to SMR.

  • PDF

Life History, Ginseng Damage and Chemical Control of the Field Slug, Deroceras varsans A, Adams (들민달팽이의 생활사와 인삼의 피해 및 약제 방제)

  • 김기황;오승환
    • Journal of Ginseng Research
    • /
    • v.14 no.3
    • /
    • pp.421-426
    • /
    • 1990
  • Field and laboratory works were conducted to Investigate the life history, ginseng damage and chemical control effect of the field slug, Deroceras varians A. Adams. D. varians laid eggs from April to June, but a small number of eggs were also found from July to September in the field. Most young slugs grew through the slimmer months to maturity by October. overwintered beneath the moist soil surface, and began feeding and egg-laying in the following April. indicating that D varians have a life cycle in a year. Damage of ginseng plants by D. varina occurred mainly from late April to mid May in the 3rd to 5th year ginseng fields with rice-straw mulching. It seems that this damage is caused by the adults in oviposition periods and related to rice-straw mulching of ginseng fields. In the experiment, ethoprop 5% granule and metaldehyde 6% bait showed relatively high effectiveness in the control of D. varians adults. Bordeaux mixture was more effective when the chemical was sprayed after infestation of the slug than before the infestation and when the 6-12 mixture was used.

  • PDF

Soil Chemical Properties, Microbial Community and Ginseng Root Rot in Suppressive and Conducive Soil Related Injury to Continuously Cropped Ginseng (인삼 연작장해 유발토양과 억제토양의 화학성, 미생물상 및 뿌리썩음병 발생 특성)

  • Lee, Sung Woo;Lee, Seung Ho;Seo, Mun Won;Jang, In Bok;Kwon, Ra Yeong;Heo, Hye Ji
    • Korean Journal of Medicinal Crop Science
    • /
    • v.28 no.2
    • /
    • pp.142-151
    • /
    • 2020
  • Background: Suppressive soil inhibits soil-borne diseases if pathogens are present, and ginseng does not show injury even if replanted in the same field. Methods and Results: Soil chemical properties and microbial community of soil were investigated in soil suppressive and conducive to ginseng root rot. Root rot disease in 2-year-old ginseng was tested by mixing conducive soil, with suppressive or sterilized suppressive soil. The root rot ratio in suppressive soil was 43.3% compared to 96.7% in conducive soil. Biological factors acted to inhibit the root rot because disease ratio was increased in the sterilized suppressive soil compared to that in non-suppressive soil. The suppressive soil had lower pH, nitrate nitrogen and sodium than the conducive soil. Dominat bacteria and fungi (more than 1.0%) were 3 and 17 species in conducive soil and 7 and 23 species in suppressive soil, respectively. The most predominant fungi were Pseudaleuria sp. HG936843 (28.70%) in conducive soil and Pseudogymnoascus roseus (7.52%) in suppressive soil. Conclusion: Microbial diversity was more abundant in the suppressive soil than in the conducive soil, and the proportion of pathogens (Nectriaceae sp.) causing root rot was significantly lower in the suppressive soil than in the conducive soil.

Soil Environment and Soil-borne Plant Pathogen Causing Root Rot Disease of Ginseng (인삼 뿌리썩음병 발병에 미치는 토양전염성병원균과 토양환경요인)

  • Shin, Ji-Hoon;Yun, Byung-Dae;Kim, Hye-Jin;Kim, Si-Ju;Chung, Doug-Young
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.3
    • /
    • pp.370-376
    • /
    • 2012
  • Disease is the major problem in ginseng cultivation from seed stratification, soil preparation prior to planting, right through to drying of the roots. There are many soil-borne disease pathogen in rhizosphere soil environment, furthermore occurrence of diseases by a diverse group of fungi and related organisms are closely related to various soil condition. Observable symptoms for soil-borne diseases include wilting, leaf death and leaf fall, death of branches and limbs and in severe cases death of the whole plant. The fungus Cylindrocarpon destructans is the cause of root rot characterized by a decay of the true root system in many ginseng production areas in Korea. Some pathogens are generally confined to the juvenile roots whilst others are capable of attacking older parts of the root system. However, the relation between the soil environmental characteristics and ginseng root rot by soil-borne disease pathogen is not clearly identified in ginseng field. In this paper, we reviewed soil-borne plant pathogen causing root rot disease of ginseng with respect to soil environment.

Spore Germination of Some Plant Pathogenic Fungi under Different Soil Conditions in Relation to Soil Fungistasis (토양조건에 따른 몇가지 식물병원균의 포자발아와 토양정균 현상)

  • Lee Min Woong;Choi Hae Jung;Shim Jae Ouk
    • Korean Journal Plant Pathology
    • /
    • v.1 no.3
    • /
    • pp.157-164
    • /
    • 1985
  • Some interactions in various soil conditions, numbers of microbial populations, root rot disease development and rates of spore germiation in three different location of soils were investigated. The calcium and magnesium contents were higher in replanted fields of ginseng (Panax ginseng) at Goesan. Potassium contents were high in replanted field at Poonggi and textural class of the soils was silt loam except for silt clay loam in first cultured field of ginseng at Goesan. For the germination process of Fusarium solani, F. moniliforme, F. oxysporum, and Alternaria panax, the percentage germination of fungal spores was high in double distilled water and Pfeffer's solution as media, whereas the lower rate of germination of spores was observed in soil extracts. Numbers of bacteria were high in replanted field soil at Gumsan, and propagules of fungi in replanted fields at Gumsan and Poonggi were higher than other soils, but higher numbers of actinomycetes were found in the first cultured field of ginseng at Goesan and Poonggi. Fungistasis was induced by higher microbial populations present in soil that was initiated when amended with garlic stalk, crushed bean and ginseng leaves. On the other hand, there was no fungistasis in soil amended with wheat and barley straw, and this tendency was a little difference on the soil sample.

  • PDF

Crop Rotation of the Korean ginseng (Panax ginseng C.A.Meyer) and the Rice in Paddy Field (고려인삼(高麗人蔘)의 답전윤환재배(畓田輪換栽培) 효과(效果))

  • Jo, Jae-Seong;Kim, Choong-Soo;Won, Jun-Yeon
    • Korean Journal of Medicinal Crop Science
    • /
    • v.4 no.1
    • /
    • pp.19-26
    • /
    • 1996
  • The crop rotation of rice and ginseng in paddy field has very important meaning because up-land field suitable for ginseng cultivation is now being insufficient day by day in main ginseng production area. This studies were conducted to define basic problems related to ginseng cultivation and replanting in paddy field. In Keumsan district, the most serious problem on ginseng cultivation in paddy field was excess of mineral salts left behind in the soil of rice cultivation. The amounts of organic matters, CEC and the mineral elements including potassium were higher in the soil of paddy ginseng field compared to those of upland. Plant growth of 3 and 4 year old ginseng and root yield of four year old ginseng cultivated in paddy field of 1st and replanting were not decreased compared to those of 1st - planting of up-land field, but those were significantly decreased in replanted compared to those of first planted upland field. Crop rotation with ginseng and rice in paddy field seemed to be a good way to avoid hazards of continuous cropping of ginseng with it's outyield of root and less infection of diseases. Amounts of crude saponin and ginsenosides of ginseng cultivated in paddy field were not differ from those of upland field.

  • PDF

BIOLOGICAL CONTROL OF GINSENG ROOT ROTS WITH SOIL AMENDMENTS

  • Chung Hoo Sup;Kim Choong Hoe
    • Proceedings of the Ginseng society Conference
    • /
    • 1978.09a
    • /
    • pp.67-74
    • /
    • 1978
  • The phenomenon of 'soil sickness' is one of the most important limiting factors for ginseng(Panax ginseng) production in Korea. The principal cause is known to be due to the root rots caused by Cylindrocarpon destructans and Fusarium solani. Attempts were made to control the root rots with non-polluting cultural methods or soil amendments. Among the nine soil amendments tested, crab shell, cow bone and pig feces were selected for further testing. Each of the three amendments increased the populations or various actinomycetes in the range of 10-25 times over that of non-amended soil, whereas the population of C. destructans was reduced to about $50-70\%$ as compared with the control. Five isolates of Streptomyces with clear zones on chitin-agar medium were selected and then tested for their antagonistic effects on C. destructans. When anyone of the five isolates of Streptomyces and C. destructans was grown together in a modified peptone broth, growth of the latter was highly inhibited. When three levels of crab shell, cow bone, or pig feces were used to amend potted soil infested with C. destruetans, the root rot ratings of ginseng seedlings were reduced to less than one half in all the treatments as compared to the control. In another similar experiment, crab shell and cow bone amendments resulted in almost complete control of the seedling root rots in soil infested with C. destructans or F. solani. In conclusion, biological control with soil amendments of ginseng root rots caused by C. destructans and F. solani was successful. Further basic studies should be pursued using soil amendments for better control. In addition, field experiments are needed to complement the soil amendment control measures in an integrated pest control program.

  • PDF

The Chracterization of Critical Ranges of Soil Physico-chemical Properties of Ginseng Field and Nutrient Contents of Ginseng Leaves in Gyeonggi Province (경기지역 인삼재배지의 토양 및 엽중 적정양분함량 검정)

  • Jin, Hyun-O;Kwon, Hyuck-Bum;Yang, Deok-Chun
    • Korean Journal of Plant Resources
    • /
    • v.24 no.5
    • /
    • pp.642-649
    • /
    • 2011
  • Ginseng growth is largely affected by characteristics of soil in Ginseng field. In this study, we determined the critical ranges of physico-chemical properties of soil for optimization of ginseng growth by analyzing the soils from Anseong and Pocheon regions in Gyeonggi province. Fresh weight of ginseng was 2 to 5 fold higher in good growth field compared to poor growth field within Anseong region. In the case of Pocheon region, 1.5 to 2 fold differences of fresh weight of ginseng was observed between good and poor growth field. These results indicate the difference of ginseng growth even in the same region. Based on these results, critical ranges of physico-chemical properties of soils were determined by comparing the good and poor growth field of each regions, which are follows; more than 50% of soil porosity, 2.0~2.8 g/kg of total nitrogen, 500~900 mg/kg for Av. $P_2O_5$, 2.3~3.5 $cmol_c\;kg^{-1}$ for Exch. Ca in Anseong; less than 13% of liquid phase, 400~650 mg/kg for Av. $P_2O_5$, 4.0~4.7 $cmol_c\;kg^{-1}$ for Exch. Ca, less than 0.8 and 0.5 $cmol_c\;kg^{-1}$ for Exch. Mg and K, respectively, in Pocheon. Interestingly, we found that ginseng growth was affected by exchangeable base ratio (Ca:Mg:K) especially in Anseong region, which were 6:2:1 in good growth field while 4:2:1 in poor growth field. Critical ranges for nutrient contents of ginseng leaves were also characterized, which are less than 0.2% and 0.22% of each P and Mg, respectively, in Anseong, while less than 1.8% and 0.18% of each N and P, respecively, and 1.5~3.0% of K in Pocheon. In addition, we determined critical ranges for inorganic nutrient contents in the current study.