• Title/Summary/Keyword: gingival fibroblast

Search Result 147, Processing Time 0.019 seconds

THE mRNA EXPRESSION OF GROWTH FACTORS IN FIBROBLAST FROM GINGIVAL HYPERPLASIA INDUCED BY CYCLOSPORINE A (Cyclosporine A에 의해 과증식된 치은 조직에서 배양된 섬유아세포의 성장인자 발현에 관한 연구)

  • Kim, Young-Muen;Hwang, Kyung-Gyun;Lee, Jae-Seon;Park, Chang-Joo;Shim, Kwang-Sup
    • Maxillofacial Plastic and Reconstructive Surgery
    • /
    • v.28 no.5
    • /
    • pp.445-453
    • /
    • 2006
  • Cyclosporine A (CsA) is a powerful immunosuppresive agent used to prevent graft rejection of organ and treat autoimmune disease. One of the major side effects associated with CsA treatment is the development of gingival overgrowth. The purpose of this study was to investigate the mRNA expression and association of the several growth factors in gingival overgrowth induced by CsA, respectively. Gingival fibroblasts were obtained from gingival tissues of healthy donor and the patients treated with CsA. The cultured gingival fibroblasts were incubated with increasing concentrations of CsA for 24 hours, and the expression of MMP-1, TIMP-1, $TGF-{\beta}_1$, p21 were determined by reverse transcription-polymerase chain reaction (RT-PCR). The expressions of MMP-1 was slightly increased according to the concentration of treated CsA, but there was no statistical significance. TIMP-1 showed the increased expression at the CsA concentration of 250 and 500 ng/ml and significantly decreased at the CsA concentration of 750ng/ml. $TGF-{\beta}_1$ showed the increased expression at the CsA concentration of 500 and 750 ng/ml. The expression of p21 was not changed significantly. We concluded that the gingival hyperplasia induced by CsA was more related with $TGF-{\beta}_1$ than MMP-1 or TIMP-1 on gingival collagen metabolism in patients treated with CsA.

A Comparative Study of Gene Expression Patterns of Periodontal Ligament Cells and Gingival Fibroblasts using the cDNA Microarray (cDNA Microarray를 이용한 치주인대세포와 치은섬유아세포의 유전자 발현에 대한 연구)

  • Jeon, Chai-Young;Park, Jin-Woo;Lee, Jae-Mok;Suh, Jo-Young
    • Journal of Periodontal and Implant Science
    • /
    • v.34 no.1
    • /
    • pp.205-221
    • /
    • 2004
  • Periodontal ligament(PDL) cells have been known as playing an important roles in periodontal regeneration and gingival fibroblasts are also important to periodontal regeneration by forming connective tissue attachment. There were rare studies about the gene expression patterns of PDL cells and gingival fibroblasts, therefore in this study, we tried cDNA microarray-based gene expression monitoring to explain the functional differences of PDL cells and gingival fibroblasts in vivo and to confirm the characteristics of PDL cells. Total RNA were extracted from PDL cells and gingival fibroblasts of same person and same passages, and mRNA were isolated from the total RNA using Oligotex mRNA midi kit(Qiagen) and then fluorescent cDNA probe were prepared. And microarray hybridization were performed. The gene expression patterns of PDL cells and gingival fibroblasts were quite different. About 400 genes were expressed more highly in the PDL cells than gingival fibroblasts and about 300 genes were more highly expressed in the gingival fibroblasts than PDL cells. Compared growth factor- and growth factor receptor-related gene expression patterns of PDL cells with gingival fibroblasts, IGF-2, IGF-2 associated protein, nerve growth factor, placental bone morphogenic protein, neuron-specific growth- associated protein, FGF receptor, EGF receptor-related gene and PDGF receptor were more highly expressed in the PDL cells than gingival fibroblasts. The results of collagen gene expression patterns showed that collagen type I, type III, type VI and type VII were more highly expressed in the PDL cells than gingival fibroblasts, and in the gingival fibroblasts collagen type V, XII were more highly expressed than PDL cells. The results of osteoblast-related gene expression patterns showed that osteoblast specific cysteine-rich protein were more highly expressed in the PDL cells than gingival fibroblasts. The results of cytoskeletal proteins gene expression patterns showed that a-smooth muscle actin, actin binding protein, smooth muscle myosin heavy chain homolog and myosin light chain were more highly expressed in the PDL cells than gingival fibrobalsts, and ${\beta}-actin$, actin-capping protein(${\beta}$ subunit), actin- related protein Arp3(ARP) and myosin class I(myh-1c) were more highly expressed in the gingival fibroblasts than PDL cells. Osteoprotegerin/osteoclastogenesis inhibitory factor(OPG/OCIF) was more highly expressed in the PDL cells than gingival fibroblasts. According to the results of this study, PDL cells and gingival fibroblasts were quite different gene expression patterns though they are the fibroblast which have similar shape. Therefore PDL cells & gingival fibroblasts are heterogeneous populations which represent distinct characteristics. If more studies about genes that were differently expressed in each PDL cells & gingival fibroblasts would be performed in the future, it would be expected that the characteristics of PDL cells would be more clear.

Effects of the root conditioning treatments after Nd:YAG laser irradiation on in vitro human gingival fibroblast attachment to root surfaces (Nd:YAG 레이저조사 후 치근의 처치방법들이 치근면 치은섬유아세포부착에 미치는 영향에 관한 연구)

  • Moon, Hye-Seong;Lim, Kee-Jung;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.701-713
    • /
    • 1996
  • The purpose of this study was to evaluate the biocompatibility of the Nd:YAG lased root surface followed by root planing and/or tetracyline-HCI(T.C.-HCI) conditioning. $30,4mm{\times}4mm$ root segments were obtained from unerupted third molars and 21, periodontally involved root segments. The treatment groups were as follows : (1) healthy root cementum surface groups : 1) control(non-treated group), 2) lased only, 3) lased/root planed, and 4) lased/T.C.-HCI. (2) diseased root cementum surface groups : 1) control(root planed only), 2) lased/root planed, and 3) lased/root planed/T.C.-HCI. The specimens were treated with a Nd:YAG laser using a $320{\mu}m$ noncontact optic fiber handpiece with an energy setting of 1.5W($114.6J/cm^2$), 2.0W($152.9J/cm^2$), 5.0W($382J/cm^2$) for one minute. The fiber was held perpendicular to the petri dish(NUNC) 2cm apart in an attempt to expose the entire root segments equally. Human gingival fibroblasts were cultured from explants of normal interdental gingival tissue obtained during third morlar extraction. The attachment assay was performed with third-generation fibroblasts. The numbers of gingival fibroblasts attached to the root surface were counted on each specimen under the light microscope, and were statistically analyzed by the oneway ANOVA followed by Tukey's test in SPSS/PC+programs. The results were as follows : 1) In healthy root cementum surfaces, lased/root planed groups exhibited a significantly increased fibroblast attachment compared to controls, lased only, and lased/T.C.-HCI groups(p<0.05), 2) In diseased root cementum surfaces, laser treatment followed by root planing and/or T.C.HCl groups exhibited a increased tendency of fibroblast attachment compared to root planed only group. The results suggest that laser treatment followed by root planing and/or T.C.-HCl would appear necessary so as to render the root surface biocompatible.

  • PDF

Effects of some herbal drugs on gingival fibroblast and periodontal ligament cellular activity (생약 제제가 세포활성도에 미치는 효과)

  • Doo, Jin-Soo;Kang, Jung-Ku;You, Hyung-Keun;Shin, Hyung-Sik
    • Journal of Periodontal and Implant Science
    • /
    • v.27 no.3
    • /
    • pp.459-468
    • /
    • 1997
  • Healing of periodontal tissues require the migration and proliferation of gingival fibroblasts and periodontal ligament cells. There is many evidences that the some agents like cytokines and polypeptide growth factors are mediate these cellular events in wound healing. Recently someone is interested in herbal drugs on periodontal tissue healing processes. The purpose of this study was to examine the effects of 4 herbal drugs, Carthami Flis, Moutan Redias Cortex, Scirpi Rhisoma, Seed of Carthamus tinctorius L. on human gingival fibroblasts and periodontal ligament cells. Periodontal ligament cells and gingival fibroblasts were primarily cultured from extracted premolar with non-periodontal diseases. The powder from extracted. herbal drugs were prepared with distilled water. Cells were cultured with DMEM at $37^{\circ}C$, 5% $CO_2$, 100% humidity incubator, and treated with each herbal drugs with proper concentration for 1, 2, and 3 days. The cell activity was determined by ELISA reader using MTT assay. There was the most significant elevation in $10^{-3}g/ml$ of almost herbal drugs on cellular activities. The result of this study demonstrated that Carthami Flis, Moutan Radicis Cortex, Scirpi Rhisoma, Seed of Carthamus tinctorius L. appears to have beneficial effect on healing process after periodontal treatment.

  • PDF

The effect of low level laser irradiation on proliferation and alkaline phosphatase activity of human gingival fibroblast in vitro (저출력 레이저 조사가 치은섬유아세포의 증식과 염기성 인산분해효소의 활성에 미치는 영향)

  • Park, Byung-Ki;Lim, Kee-Jung;Kim, Byung-Ock;Han, Kyung-Yoon
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.3
    • /
    • pp.715-724
    • /
    • 1996
  • This study was performed to identify the proliferation and to measure the alteration of alkaline phosphatase activity in human gingival fibroblasts cultured. For the present study, the authors cultured the human gingival fibroblasts oriented from the sound interdental gingiva, and used third passage. It was used methyl $[^3H]$ Thymidine to identify the proliferation in human gingival fibroblasts and used 410nm of the spectrophotometer to measure the alteration of the alkaline phosphatase activity in human gingival fibroblasts. The results were as follows: 1. There was a statistically significant increase in the proliferation of gingival fibroblasts following low level laser irradiation at 24 hour(p<0.05). 2. There was a statistically significant increase in activity of alkaline phosphatase compared to control group at 5-day laser irradiation after in laser irradiation groups(p<0.05). And there was a statistically significant increase in activity of alkaline phosphatase compared to control group at 7-day laser irradiation after in the I-minute laser irradiation group(p<0.05), but there was a statistically significant decrease in activity of alkaline phosphatase compared to 1minute laser irradiation group at 7-day laser irradiation in the 2-minute laser irradiation group after(p<0.05). The results, within the limits of the present experiments, suggest that, the low level laser irradiation accelerates the proliferation of gingival fibroblasts and alters the alkaline phosphatase activity until the restricted period.

  • PDF

IMMUNOHISTOCHEMICAL STUDIES ON CELL POPULATION AND GROWTH FACTORS IN GINGIVAL HYPERPLASIA (치은증식시 세포구성과 성장인자에 관한 면역조직화학적 연구)

  • Lee, Kang-Nam;Han, Soo-Boo;Lee, Jae-Il
    • Journal of Periodontal and Implant Science
    • /
    • v.24 no.2
    • /
    • pp.357-375
    • /
    • 1994
  • The purpose of this study was to investigate the differences of histochemical characteristics in inflammatory fibrous gingival hyperplasia (FGH), phenytoin-induced gingival hyperplasia(PIGH), idiopathic gingival hyperplasia(IDGH) and control groups (healthy and inflammatory gingiva) by immunohistochemical method with various antibodies and histomorphological analysis. In immunohistochemical finding, antibodies to inflammatory cells (T/B lymphocytes, macrophages, other monocytes), proliferating cell nuclear antigen(PCNA), epidermal growth factor(EGF), factor VIII, and type I collagen were used. 1. The inflammatory infiltrates in FGH were less than those in inflammatory gingiva. The composition of inflammatory cells of PIGH was similar with that of FGH. IDGH showed a similar histologic findings with healthy gingival tissue. 2. In FGH, the number of fibroblasts and newly-formed collagen fibers was increased. No significant increase of fibroblasts and the dense accumulation of thick collagen fibers were seen in PIGH. The increase of fibroblasts and the dense accumulation of thick collagen were seen in IDGH. 3. PCNA-positive cells were localized mainly in the area accumulated with inflammatory cells and blood vessels, significantly increased in all hyperplastic tissue groups, and distributed evenly in IDGH. 4. The distribution of EGF were not observed in healthy gingiva but detected locally in area with confluent blood vessels,without significant difference between the other tissue groups. This results suggest that inflammation plays a significant role in inducing hyperplastic change of gingival tissue. While in DIGH, drug itself as well as inflammation seems to attribute to hyperplastic change.

  • PDF

Effects Of Minocycline And $TGF-{\beta}1$ On Human Gingival Fibroblasts And Periodontal Ligament Cells In Vitro (Minocycline 및 $TGF-{\beta}1$이 배양 인체 치은섬유모세포와 치주인대세포에 미치는 영향)

  • Yoon, Dong-Hwan;You, Hyung-Keun;Shin, Hyung-Shik
    • Journal of Periodontal and Implant Science
    • /
    • v.26 no.1
    • /
    • pp.188-201
    • /
    • 1996
  • One of the initial events required for periodontal regeneration is the attachment, spreading and proliferation of fibroblasts at the healing sites. These have been reported that minocycline stimulates the attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the proliferation of periodontal ligament cells. The purpose of this study was to evaluate and confirm the effect of minocycline and $TGF-{\beta}1$ on human gingival fibroblasts and periodontal ligament cells. That gingival fibroblasts and periodontal ligament cells used in this study were obtained from the explants of healthy periodontal ligaments and gingival tissues of extracted 3rd molars or premolar teeth extracted from the patients with orthodontic treatment. The cells were cultured in ${\alpha}-MEM$(minimal essential medium) supplemented with antibiotics and FBS(fetal bovine serum) at $37^{\circ}C$ in a humidified atmosphere of 5% carbon dioxide-95% air. Cells were used between the 5th to 8th passage in this study. The attachment and activity of both cells were evaluated by MTT assay. The results were as follows: 1. Maximum gingival fibroblast attachment was seen at a $50{\mu}g/ml$ dose of minocycline, while maximum periodontal ligament cell attachment was seen at a $100{\mu}g/ml$, and exposure of both cells to minocycline above maximal attachment dose results in a decline from maximum attachment. 2. The activity values of both cells tested minocycline were below to the control activity values at all concentrations. 3. The attachment values of both cells tested $TGF-{\beta}1$ were below or similar to control attachment values. On the above the findings, minocycline stimulated the cell attachment of gingival fibroblasts and periodontal ligament cells and $TGF-{\beta}1$ enhances the cell activity of periodontal ligament cells.

  • PDF

Expression of Senescence-Associated Secretory Phenotype in Senescent Gingival Fibroblasts

  • Sangim Lee
    • Journal of dental hygiene science
    • /
    • v.23 no.2
    • /
    • pp.169-175
    • /
    • 2023
  • Background: Although microbial infection is direct cause of periodontal disease, various environmental factors influence the disease severity. Aging is considered a risk factor for oral diseases, with the prevalence of periodontal diseases increasing with age. Moreover, senescence-associated secretory phenotype (SASP) expressed in age-related diseases is a key marker of chronic inflammation and aging phenotypes. Therefore, this study aimed to understand the relevance of senescent cells to periodontal health and disease, investigate the possibility of regulating the expression of aging- and osteolysis-related factors in gingival fibroblasts, and investigate the effect of senescence induction in gingival fibroblasts on osteoclast differentiation in mouse bone marrow-derived macrophages (BMMs). Methods: After stimulation with 400 nM hydrogen peroxidase, human gingival fibroblasts (HGFs) were examined for senescence-associated β-galactosidase. Western blot and enzyme-linked immunosorbent assays were performed to assess the expression of SASP. Osteoclast formation was assessed in BMMs using a conditioned medium (CM) from hydrogen peroxide-stimulated HGFs. Osteoclastic differentiation was investigated using tartrate-resistant acid phosphatase (TRAP) staining and activity. Data analysis was performed using SPSS version 25.0. Results: The expression of senescence-related molecules, including p53, p16, and p21, and the expression of osteolytic factors, including IL-6, IL-8, and IL-17, were found to be significantly higher in the hydrogen peroxide-stimulated HGF than in the control group. Regarding the indirect effects of senescent gingival cells, the number of osteoclasts and TRAP activity increased according to the differentiation of BMM cultured in CM. Conclusion: Our results on the of between osteolytic factors and cellular senescence in gingival fibroblast cells helped to reveal evidence of pathological aging mechanisms. Furthermore, our results suggest that the development of novel therapies that target specific SASP factors could be an effective treatment strategy for periodontal disease.

EVALUATION OF THE GENOTOXICITY OF FERRIC SULFATE BY COMET ASSAY (Comet assay를 이용한 Ferric Sulfate의 유전자 독성에 대한 연구)

  • Kang, Ho-Seung;Kim, Shin;Jeong, Tae-Sung;Park, Hae-Ryoun
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.27 no.1
    • /
    • pp.77-84
    • /
    • 2000
  • Although ferric sulfate has been proposed as an alternative to formocresol in pulpotomy treatment in primary teeth, it has been given little concern regarding its cytotoxicity and mutagenicity. In the present study, we assessed the in vitro genotoxic effect of a ferric sulfate on human gingival fibroblast cell line (HGF-1). DNA damage was evaluated using comet assay (single cell alkaline gel electrophoresis) and obtained the results as follows: 1. A dose-response relationship was found between ferric sulfate concentrations (0 to 5mM) and DNA damages. 2. Above the concentration of 0.1mM, DNA damage was significantly increased than those of the control (p<0.05). 2. At the fixed concentration of 0.05mM, no significant difference was found between exposure time and DNA damage. These findings suggest that ferric sulfate as a pulpotomy agent can induce DNA damage in human gingival fibroblasts.

  • PDF

Mechanism underlying NO-induced apoptosis in human gingival fibroblasts

  • Hwang, In-Nam;Jeong, Yeon-Jin;Jung, Ji-Yeon;Lee, Jin-Ha;Kim, Kang-Moon;Kim, Won-Jae
    • International Journal of Oral Biology
    • /
    • v.34 no.1
    • /
    • pp.7-14
    • /
    • 2009
  • Nitric oxide (NO) acts as an intracellular messenger at the physiological level but can be cytotoxic at high concentrations. The cells within periodontal tissues, such as gingival and periodontal fibroblasts, contain nitric oxide syntheses and produce high concentrations of NO when exposed to bacterial lipopolysaccharides and cytokines. However, the cellular mechanisms underlying NO-induced cytotoxicity in periodontal tissues are unclear at present. In our current study, we examined the NO-induced cytotoxic mechanisms in human gingival fibroblasts (HGF). Cell viability and the levels of reactive oxygen species (ROS) were determined using a MTT assay and a fluorescent spectrometer, respectively. The morphological changes in the cells were examined by Diff-Quick staining. Expression of the Bcl-2 family and Fas was determined by RT-PCR or western blotting. The activity of caspase-3, -8 and -9 was assessed using a spectrophotometer. Sodium nitroprusside (SNP), a NO donor, decreased the cell viability of the HGF cells in a dose- and time-dependent manner. SNP enhanced the production of ROS, which was ameliorated by NAC, a free radical scavenger. ODQ, a soluble guanylate cyclase inhibitor, did not block the SNP-induced decrease in cell viability. SNP also caused apoptotic morphological changes, including cell shrinkage, chromatin condensation, and DNA fragmentation. The expression of Bax, a member of the proapoptotic Bcl-2 family, was upregulated in the SNP-treated HGF cells, whereas the expression of Bcl-2, a member of the anti-apoptotic Bcl-2 family, was downregulated. SNP augmented the release of cytochrome c from the mitochondria into the cytosol and enhanced the activity of caspase-8, -9, and -3. SNP also upregulated Fas, a component of the death receptor assembly. These results suggest that NO induces apoptosis in human gingival fibroblast via ROS and the Bcl-2 family through both mitochondrial- and death receptor-mediated pathways. Our data also indicate that the cyclic GMP pathway is not involved in NO-induced apoptosis.