• Title/Summary/Keyword: giant magnetoimpedance

Search Result 32, Processing Time 0.016 seconds

Microstructure and Magnetic Characteristics of Mn-doped Finemet Nanocomposites

  • Le, Anh-Tuan;Kim, Chong-Oh;Chau Nguyen;Tho Nguyen Duc;Hoa Nguyen Quang;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.30-35
    • /
    • 2006
  • A thorough study about the influences of Mn substitution for Fe on the microstructure and magnetic characteristics of $Fe_{73.5-x}Mn-{x}Si_{13.5}B_{9}Nb_{3}Cu_1$ (x = 1, 3, 5) alloys prepared by the melt-spinning technique has been performed. Nanocomposites composed of nanoscale $(Fe,Mn)_{3}Si$ magnetic phase embedded in an amorphous matrix were obtained by annealing their amorphous alloys at $535^{\circ}C$ for 1 hour. The addition of Mn causes a slight increase in the mean grain size. The Curie temperatures of the initial amorphous phase and of the nanocrystals phase decreased, while the Curie temperature of the remaining amorphous phase remained nearly constant with increasing Mn content. Soft magnetic properties of the crystallized samples have been significantly improved by a proper thermal treatment. Accordingly, the giant magnetoimpedance effect is observed and ascribed to the increase of the magnetic permeability, and the decrease of the coercivity of the samples. The increased magnetic permeability is resulted from a decrease in the magnetocrystalline anisotropy and saturation magnetostriction.

Effect of Annealing Temperature on the Permeability and Magneto-Impedance Behaviors of Fe68.5Mn5Si13.5B9Nb3Cu1 Amorphous Alloy

  • Le Anh-Than;Ha, Nguyen Duy;Kim, Chong-Oh;Rhee, Jang-Roh;Chau Nguyen;Hoa Nguyen Quang;Tho Nguyen Due;Lee, Hee-Bok
    • Journal of Magnetics
    • /
    • v.11 no.1
    • /
    • pp.55-59
    • /
    • 2006
  • The effect of annealing temperature on the permeability and giant magneto-impedance (GMI) behaviors of $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ amorphous alloy has been systematically investigated. The nanocrystalline $Fe_{68.5}Mn_{5}Si_{13.5}B_9Nb_3Cu_1$ alloys consisting of ultra-fine $(Fe,Mn)_3Si$ grains embedded in an amorphous matrix were obtained by annealing their precursor alloy at the temperature range from $500^{\circ}C\;to\;600^{\circ}C$ for 1 hour in vacuum. The permeability and GMI profiles were measured as a function of external magnetic field. It was found that the increase of both the permeability and the GMI effect with increasing annealing temperature up to $535^{\circ}C$ was observed and ascribed to the ultrasoft magnetic properties in the sample, whereas an opposite tendency was found when annealed at $600^{\circ}C$ which is due to the microstructural changes caused by high-temperature annealing. The study of temperature dependence on the permeability and GMI effect showed some insights into the nature of the magnetic exchange coupling between nanocrystallized grains through the amorphous boundaries in nanocrystalline magnetic materials.