• Title/Summary/Keyword: giant magnetoimpedance

Search Result 32, Processing Time 0.044 seconds

Temperature dependence of permeability and magnetoimpedance effect in $Co_{70}Fe_5Si_{15}Nb_{2.2}Cu_{0.8}B_7$ ribbons

  • Phan, Manh-Huong;Kim, Yong-Seok;Quang, Pham-Hong;Yu, Seong-Cho;Nguyen Chau;Chien, Nguyen-Xuan
    • Proceedings of the Korean Magnestics Society Conference
    • /
    • 2003.06a
    • /
    • pp.88-89
    • /
    • 2003
  • During the past decade, giant magnetotransport phenomena such as giant magetoresistance (GMR) in thin films and in manganese perovskites, and, giant magnetoimpedance (GMI) in soft magnetic amorphous ribbons, have brought much interest in the basic physical understanding and their applications as magnetic recording heads and in magnetic sensors technology. Among the parameters required for the quality of a magnetic sensor, temperature dependences of GMR and GMI profiles are playing an important role. In the present work, we have studied temperature dependences of the longitudinal permeability and giant magnetoimpedance effect in $Co_{70}$F $e_{5}$S $i_{15}$ N $b_{2.2}$C $u_{0.8}$ $B_{7}$ amorphous ribbons expecting as a promising candidate in the domain of magnetic sensors.rs.rs.rs.s.

  • PDF

Prototype Milli Gauss Meter Using Giant Magnetoimpedance Effect in Self Biased Amorphous Ribbon

  • Kollu, Pratap;Yoon, Seok-Soo;Kim, Gun-Woo;Angani, C.S.;Kim, Cheol-Gi
    • Journal of Magnetics
    • /
    • v.15 no.4
    • /
    • pp.194-198
    • /
    • 2010
  • In our present work, we developed a GMI (giant magnetoimpedance) sensor system to detect magnetic fields in the milli gauss range based on the asymmetric magnetoimpedance (AGMI) effect in Co-based amorphous ribbon with self bias field produced by field-annealing in open air. The system comprises magnetoimpedance sensor probe, signal conditioning circuits, A/D converter, USB controller, notebook computer, and program for measurement and display. Sensor probe was constructed by wire-bonding the cobalt based amorphous ribbon with dimensions $10\;mm\;{\times}\;1\;mm\;{\times}\;20\;{\mu}m$ on a printed circuit board. Negative feedback was used to remove the hysteresis and temperature dependence and to increase the linearity of the system. Sensitivity of the milli gauss meter was 0.3 V/Oe and the magnetic field resolution and environmental noise level were less than 0.01 Oe and 2 mOe, respectively, in an unshielded room.

Current sensor application of giant magnetoimpedance in amorphous materials (교류자기저항효과를 이용한 비정질 리본 전류센서)

  • Rheem, Y.W.;Kim, C.G.;Kim, C.O.;Kim, G.D.;Park, Y.T.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.04a
    • /
    • pp.11-13
    • /
    • 2002
  • The performance of DC current sensor based on giant magnetoimpedance (GMI) effect in amorphous ribbon has been tested. The ribbon after field annealing shows the maximum GMI ratio of 30 % at 100 kHz measuring frequency. In the sensor element of sample wound the circular form, GMI ratio and sensitivity are decreased due to internal stress. The sensor voltage output increases with applied DC current up to 1 A with a good linearity, of which direction can be known due to asymmetric characteristics.

  • PDF