• Title/Summary/Keyword: gesture detection

Search Result 95, Processing Time 0.024 seconds

Object Detection and Optical Character Recognition for Mobile-based Air Writing (모바일 기반 Air Writing을 위한 객체 탐지 및 광학 문자 인식 방법)

  • Kim, Tae-Il;Ko, Young-Jin;Kim, Tae-Young
    • The Journal of Korean Institute of Next Generation Computing
    • /
    • v.15 no.5
    • /
    • pp.53-63
    • /
    • 2019
  • To provide a hand gesture interface through deep learning in mobile environments, research on the light-weighting of networks is essential for high recognition rates while at the same time preventing degradation of execution speed. This paper proposes a method of real-time recognition of written characters in the air using a finger on mobile devices through the light-weighting of deep-learning model. Based on the SSD (Single Shot Detector), which is an object detection model that utilizes MobileNet as a feature extractor, it detects index finger and generates a result text image by following fingertip path. Then, the image is sent to the server to recognize the characters based on the learned OCR model. To verify our method, 12 users tested 1,000 words using a GALAXY S10+ and recognized their finger with an average accuracy of 88.6%, indicating that recognized text was printed within 124 ms and could be used in real-time. Results of this research can be used to send simple text messages, memos, and air signatures using a finger in mobile environments.

Development of a Cost-Effective Tele-Robot System Delivering Speaker's Affirmative and Negative Intentions (화자의 긍정·부정 의도를 전달하는 실용적 텔레프레즌스 로봇 시스템의 개발)

  • Jin, Yong-Kyu;You, Su-Jeong;Cho, Hye-Kyung
    • The Journal of Korea Robotics Society
    • /
    • v.10 no.3
    • /
    • pp.171-177
    • /
    • 2015
  • A telerobot offers a more engaging and enjoyable interaction with people at a distance by communicating via audio, video, expressive gestures, body pose and proxemics. To provide its potential benefits at a reasonable cost, this paper presents a telepresence robot system for video communication which can deliver speaker's head motion through its display stanchion. Head gestures such as nodding and head-shaking can give crucial information during conversation. We also can assume a speaker's eye-gaze, which is known as one of the key non-verbal signals for interaction, from his/her head pose. In order to develop an efficient head tracking method, a 3D cylinder-like head model is employed and the Harris corner detector is combined with the Lucas-Kanade optical flow that is known to be suitable for extracting 3D motion information of the model. Especially, a skin color-based face detection algorithm is proposed to achieve robust performance upon variant directions while maintaining reasonable computational cost. The performance of the proposed head tracking algorithm is verified through the experiments using BU's standard data sets. A design of robot platform is also described as well as the design of supporting systems such as video transmission and robot control interfaces.

A Study on Precise Control of Autonomous Travelling Robot Based on RVR (RVR에 의한 자율주행로봇의 정밀제어에 관한연구)

  • Shim, Byoung-Kyun;Cong, Nguyen Huu;Kim, Jong-Soo;Ha, Eun-Tae
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.17 no.2
    • /
    • pp.42-53
    • /
    • 2014
  • Robust voice recognition (RVR) is essential for a robot to communicate with people. One of the main problems with RVR for robots is that robots inevitably real environment noises. The noise is captured with strong power by the microphones, because the noise sources are closed to the microphones. The signal-to-noise ratio of input voice becomes quite low. However, it is possible to estimate the noise by using information on the robot's own motions and postures, because a type of motion/gesture produces almost the same pattern of noise every time it is performed. In this paper, we propose an RVR system which can robustly recognize voice by adults and children in noisy environments. We evaluate the RVR system in a communication robot placed in a real noisy environment. Voice is captured using a wireless microphone. Navigation Strategy is shown Obstacle detection and local map, Design of Goal-seeking Behavior and Avoidance Behavior, Fuzzy Decision Maker and Lower level controller. The final hypothesis is selected based on posterior probability. We then select the task in the motion task library. In the motion control, we also integrate the obstacle avoidance control using ultrasonic sensors. Those are powerful for detecting obstacle with simple algorithm.

Recent Technologies for the Acquisition and Processing of 3D Images Based on Deep Learning (딥러닝기반 입체 영상의 획득 및 처리 기술 동향)

  • Yoon, M.S.
    • Electronics and Telecommunications Trends
    • /
    • v.35 no.5
    • /
    • pp.112-122
    • /
    • 2020
  • In 3D computer graphics, a depth map is an image that provides information related to the distance from the viewpoint to the subject's surface. Stereo sensors, depth cameras, and imaging systems using an active illumination system and a time-resolved detector can perform accurate depth measurements with their own light sources. The 3D image information obtained through the depth map is useful in 3D modeling, autonomous vehicle navigation, object recognition and remote gesture detection, resolution-enhanced medical images, aviation and defense technology, and robotics. In addition, the depth map information is important data used for extracting and restoring multi-view images, and extracting phase information required for digital hologram synthesis. This study is oriented toward a recent research trend in deep learning-based 3D data analysis methods and depth map information extraction technology using a convolutional neural network. Further, the study focuses on 3D image processing technology related to digital hologram and multi-view image extraction/reconstruction, which are becoming more popular as the computing power of hardware rapidly increases.

Eating Activity Detection and Meal Time Estimation Using Structure Features From 6-axis Inertial Sensor (6축 관성 센서에서 구조적 특징을 이용한 식사 행동 검출 및 식사 시간 추론)

  • Kim, Jun Ho;Choi, Sun-Tak;Ha, Jeong Ho;Cho, We-Duke
    • KIPS Transactions on Computer and Communication Systems
    • /
    • v.7 no.8
    • /
    • pp.211-218
    • /
    • 2018
  • In this study, we propose an algorithm to detect eating activity and estimation mealtime using 6-axis inertial sensor. The eating activity is classified into three types: food picking, food eating, and lowering. The feature points of the gyro signal are selected for each gesture, and the eating activity is detected when each feature point appears in the sequence. Morphology technique is used to post-process to detect meal time. The proposed algorithm achieves the accuracy of 94.3% and accuracy of 84.1%.

Implementation of EPS Motion Signal Detection and Classification system Based on LabVIEW (LabVIEW 기반 EPS 동작신호 검출 및 분석 시스템 구현)

  • Cheon, Woo Young;Lee, Suk Hyun;Kim, Young Chul
    • Smart Media Journal
    • /
    • v.5 no.3
    • /
    • pp.25-29
    • /
    • 2016
  • This paper presents research for non-contact gesture recognition system using EPS(Electronic Potential Sensor) for measuring the human body of electromagnetic fields. It implemented a signal acquisition and signal processing system for designing a system suitable for motion recognition using the data coming from the sensors. we transform AC-type data into DC-type data by applying a 10Hz LPF considering H/W sampling rate. in addition, we extract 2-dimensional movement information by taking difference value between two cross-diagonal deployed sensor.

Design of Computer Vision Interface by Recognizing Hand Motion (손동작 인식에 의한 컴퓨터 비전 인터페이스 설계)

  • Yun, Jin-Hyun;Lee, Chong-Ho
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.47 no.3
    • /
    • pp.1-10
    • /
    • 2010
  • As various interfacing devices for computational machines are being developed, a new HCI method using hand motion input is introduced. This interface method is a vision-based approach using a single camera for detecting and tracking hand movements. In the previous researches, only a skin color is used for detecting and tracking hand location. However, in our design, skin color and shape information are collectively considered. Consequently, detection ability of a hand increased. we proposed primary orientation edge descriptor for getting an edge information. This method uses only one hand model. Therefore, we do not need training processing time. This system consists of a detecting part and a tracking part for efficient processing. In tracking part, the system is quite robust on the orientation of the hand. The system is applied to recognize a hand written number in script style using DNAC algorithm. Performance of the proposed algorithm reaches 82% recognition ratio in detecting hand region and 90% in recognizing a written number in script style.

Sign Language recognition Using Sequential Ram-based Cumulative Neural Networks (순차 램 기반 누적 신경망을 이용한 수화 인식)

  • Lee, Dong-Hyung;Kang, Man-Mo;Kim, Young-Kee;Lee, Soo-Dong
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.9 no.5
    • /
    • pp.205-211
    • /
    • 2009
  • The Weightless Neural Network(WNN) has the advantage of the processing speed, less computability than weighted neural network which readjusts the weight. Especially, The behavior information such as sequential gesture has many serial correlation. So, It is required the high computability and processing time to recognize. To solve these problem, Many algorithms used that added preprocessing and hardware interface device to reduce the computability and speed. In this paper, we proposed the Ram based Sequential Cumulative Neural Network(SCNN) model which is sign language recognition system without preprocessing and hardware interface. We experimented with using compound words in continuous korean sign language which was input binary image with edge detection from camera. The recognition system of sign language without preprocessing got 93% recognition rate.

  • PDF

Infrared LED Pointer for Interactions in Collaborative Environments (협업 환경에서의 인터랙션을 위한 적외선 LED 포인터)

  • Jin, Yoon-Suk;Lee, Kyu-Hwa;Park, Jun
    • Journal of the HCI Society of Korea
    • /
    • v.2 no.1
    • /
    • pp.57-63
    • /
    • 2007
  • Our research was performed in order to implement a new pointing device for human-computer interactions in a collaborative environments based on Tiled Display system. We mainly focused on tracking the position of an infrared light source and applying our system to various areas. More than simple functionality of mouse clicking and pointing, we developed a device that could be used to help people communicate better with the computer. The strong point of our system is that it could be implemented in any place where a camera can be installed. Due to the fact that this system processes only infrared light, computational overhead for LED recognition was very low. Furthermore, by analyzing user's movement, various actions are expected to be performed with more convenience. This system was tested for presentation and game control.

  • PDF

Automatic Coarticulation Detection for Continuous Sign Language Recognition (연속된 수화 인식을 위한 자동화된 Coarticulation 검출)

  • Yang, Hee-Deok;Lee, Seong-Whan
    • Journal of KIISE:Software and Applications
    • /
    • v.36 no.1
    • /
    • pp.82-91
    • /
    • 2009
  • Sign language spotting is the task of detecting and recognizing the signs in a signed utterance. The difficulty of sign language spotting is that the occurrences of signs vary in both motion and shape. Moreover, the signs appear within a continuous gesture stream, interspersed with transitional movements between signs in a vocabulary and non-sign patterns(which include out-of-vocabulary signs, epentheses, and other movements that do not correspond to signs). In this paper, a novel method for designing a threshold model in a conditional random field(CRF) model is proposed. The proposed model performs an adaptive threshold for distinguishing between signs in the vocabulary and non-sign patterns. A hand appearance-based sign verification method, a short-sign detector, and a subsign reasoning method are included to further improve sign language spotting accuracy. Experimental results show that the proposed method can detect signs from continuous data with an 88% spotting rate and can recognize signs from isolated data with a 94% recognition rate, versus 74% and 90% respectively for CRFs without a threshold model, short-sign detector, subsign reasoning, and hand appearance-based sign verification.