• Title/Summary/Keyword: geothermal technology

Search Result 225, Processing Time 0.026 seconds

A Performance Estimation of Ground Source Heat Pump System Used both for Heating and Snow-melting (난방.융설 겸용 지열원 히트펌프시스템의 운전성능 평가)

  • Choi, Deok-In;Kim, Joong-Hun;Hwang, Kwang-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.1
    • /
    • pp.7-12
    • /
    • 2012
  • This study proposes a hybrid geothermal system combined with heating mode and snow-melting mode for winter season in order to increase the annual operating efficiency of the GSHP(Ground Source Heat Pump). The purpose of this study is to get effectiveness of the hybrid geothermal system by the site experiments. In case of snow-melting only mode, the GSHP COP is 0.7 higher than system COP in average. And in case of hybrid mode, heating GSHP COP is 0.5 higher than snow-melting GSHP COP. And it is also found out that all COP obtained through measurement periods is higher than nominal COPs given by GSHP manufacturer. As a conclusion, it is clear that the proposed hybrid geothermal system is expected as a highly efficient system.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

A Road Map of the Unutilized Energy Technology (미활용에너지기술 중장기 Road Map)

  • Lee, Young-Soo;Park, Jun-Taek;Baik, Young-Jin;Shin, Kwang-Ho
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.203-208
    • /
    • 2006
  • The unutilized energy in urban area is commercially and environmentally worth recycling since it can be used as a good energy resource for the heating and cooling supply. Therefore, once heating and cooling demands are near the available unutilized energy resources, a high performance district heating and cooling can be realized by the network of unutilized energy technology. In relation to this circumstance, a road map of the unutilized energy technology is presented in this study.

  • PDF

A Performance Prediction of a Vertical-type Geothermal Heat Exchanger by CFD Analysis (CFD 해석에 의한 수직형 지열교환기의 성능예측)

  • Woo, Sang-Woo;Hwang, Kwang-Il;Kim, Jong-Hun;Shin, Seung-Ho
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.3
    • /
    • pp.117-125
    • /
    • 2007
  • This study proposes a CFD(Computational Fluid Dynamics) analysis as a method of verification of the designed-data and a supplement of the insufficient experiences in geothermal system, which shows a rapid growth among the renewable energies. The followings are the results. FLUENT 6.2.12 is used as a CFD tool on this study, with the equations of continuity, motion, energy for unsteady flow through pipes and k-epsilon turbulent model. S-type model which has one borehole with diameter 12m by depth 206m and T-type model which has 3 boreholes with $12m{\times}20m{\times}206m$ are proposed, and also the boundary conditions are described. The temperature differences between temperatures by CFD analysis and by on-site measurement are less than 1.5%, this shows a high reliability of CFD analysis process which this study proposes. After 11 days simulation operated 12 hours interval On/Off mode, it is clearly predicted that the outlet temperatures of geothermal pipes are increased by $1.2^{\circ}C$, and $2.2^{\circ}C$ after 4 months. And the outlet temperatures of geothermal pipes increased with increase of the mass flow rates through the pipes. T-type model shows that the 4m distance between boreholes are reasonable because the temperatures at 2m and 6m from boreholes are nearly same.

A Study on the Characteristics of Heat Source Temperature for Two-Well Geothermal System Using Numerical Simulation (수치 시뮬레이션을 이용한 복수정(Two-Well) 개방형 지열 시스템의 열원수 온도 변화 검토)

  • Cho, JeongHeum;Nam, YuJin
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.27 no.4
    • /
    • pp.207-212
    • /
    • 2015
  • The use of groundwater and ground_heat is one of the ways to use natural and renewable energy, and it has been considered as a technology to reduce greenhouse gas emissions and increase energy-saving. There are a few researches on the optimum design for the open-loop geothermal system. In this study, to develop the optimal design method numerical simulation of the open-loop geothermal system with two-wells was performed by a groundwater and heat transfer model. In this paper, a study was performed to analyze the system performance according to well distance and pumping flow rate. In the result, average heat exchange rate and heat source temperature were calculated and it was found that they were dependent on the pumping rate.

A Study on the Fouling Effect of Geothermal Water Scale in In-line tube Bank (직렬 관군에서 지열수스케일의 파울링 영향에 관한연구)

  • 윤석범
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.23 no.2
    • /
    • pp.131-139
    • /
    • 1999
  • An experimental study was conducted to investigate the fouling effects of geothermal water scale deposited onto a heating surface upon its forced convection heat transfer characteristics. Scales deposited onto the heating surfaces of heat exchangers seriously reduce the heat transfer perfor-mance and also increase the hydrodynamic drag. Accordingly fouling is an important problem in the design and operation of heat exchangers. The cylinders were settled in tandem with equal dis-tance between neighbouring cylinders and only the test cylinder was heated under the condition of constant heat flux. The Reynolds number was varied from 13000310 through 50003100. It is found that the heat transfer of the in-line tube banks greatly varies with the fouling of geothermal water scale especially its scale height. Further the local and average Nusselt numbers strongly depend upon the cylinder spacing and the Reynolds number.

  • PDF

Performance Characteristics and Economic Assessment of Heat Pump Systems with the Various Heat Source (열원에 따른 열펌프의 성능 비교 및 경제성 평가)

  • Park, Cha-Sik;Park, Kyoung-Woo;Kwon, Oh-Kyung
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.7 no.1
    • /
    • pp.23-31
    • /
    • 2011
  • The objectives of this study are to analyze the performance of a heat pump system with the various heat source and to carry out economic assessment for the heat pump system. The COP of the river water and ground source heat pump system was 20% higher than that of the air source heat pump system because river water and geothermal provide stable operating temperature compared with air temperature throughout the year. In addition, the economic assessment of a heat pump system using air, river water, and geothermal as a heat source was carried out. The ratio of the life cycle operating cost to the life cycle cost increased with the increase of building capacity. The payback period was found to be less than 3.3 and 4.5 years, respectively when the capacity of the river water and ground source heat pump was larger than 10 RT.

Energy Performance Comparison of Electric Heater and Geothermal Source Heat Pump type Agricultural Hot Air Dryers (전기히터식 및 지열원 히트펌프식 농산물 열풍건조기의 에너지 성능 비교)

  • Yang, Won Suk;Kim, Young Il;Park, Seung Tae
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.14 no.4
    • /
    • pp.7-12
    • /
    • 2018
  • Energy performance of electric heater and geothermal source heat pump type hot air dryers are compared in this study. For set temperatures of $30^{\circ}C$, $35^{\circ}C$ and $40^{\circ}C$, radish is dried from initial mass 60 kg until it gets 5 kg, where the difference equals the amount of water removed. As set temperature is increased, drying time is shortened for both electric heater and heat pump types, however energy efficiency is decreased due to increasing electricity consumption. Moisture extraction rate(MER) of electric heater is 2.58~2.84 kg/h, and for heat pump type 2.56~2.71 kg/h, showing little difference between the two types. Specific moisture extraction rate (SMER) of electric heater is 0.94~0.96 kg/kWh, and for heat pump type 1.72~2.21 kg/kWh. SMER of heat pump type is greater by 0.78~1.25 kg/kWh than the electric heater hot air dryer, which is 1.8~2.3 times better in terms of energy efficiency.

Performance Prediction of Geothermal Heat Pump System by Line-Source and Modified DST(TRNVDSTP) Models (선형열원 모델과 수정 DST(TRNVDSTP) 모델에 의한 지열 히트펌프 시스템 성능 예측)

  • Sohn, Byong-Hu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.2
    • /
    • pp.61-69
    • /
    • 2012
  • Geothermal heat pump(GHP) systems have been shown to be an environmentally-friendly, efficient alternative to traditional cooling and heating systems in both residential and commercial applications. Although some experimental work related to performance evaluation of GHP systems with vertical borehole ground heat exchangers for commercial buildings has been done, relatively little has been reported on the performance simulation of these systems. The aim of this study is to evaluate the cooling and heating performance of the GHP system with 30 borehole ground heat exchangers applied to an commercial building($1,210m^2$) in Seoul. For this purpose, a typical design procedure was involved with a combination of design parameters such as building loads, heat pump capacity, circulating pump, borehole diameter, and ground effective thermal properties, etc. The cooling and heating performance prediction of the system was conducted with different prediction methods and then each result is compared.