• Title/Summary/Keyword: geothermal potential

Search Result 71, Processing Time 0.023 seconds

Status and Outlook of World Geothermal Energy Utilization (세계 지열에너지 활용 현황 및 전망)

  • Song, Yoon-Ho
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.669-673
    • /
    • 2005
  • World geothermal resources potential is estimated to supply 189 EJ annually, which can take charge approximately a half of annual world energy consumpt ion, from considering identified resources and supplies in USA and Iceland. Present annual use of geothermal energy, on the other hand, is only $0.1\%$ of its potential, but still has $70\%$ share among total new renewables. World-wide installed capacity of geothermal power generation reaches 8,900 MWe and 27,825 MWt for direct uses in 2005 which is almost two-fold increase over 2000. This increase is mainly due to exploding expansion of geothermal heat pump utilization: USA and western European countries lead these trends. Although geothermal heat pump distribution in Korea is still in its starting phase, comparing to Swiss achievement in terms of areal utilization sense, we expect to come up with national supply of over 600,000 toe in near future.

  • PDF

Modeling of SP responses for geothermal-fluid flow within EGS reservoir (EGS 지열 저류층 유체 유동에 의한 SP 반응 모델링)

  • Song, Seo Young;Kim, Bitnarae;Nam, Myung Jin;Lim, Sung Keun
    • Geophysics and Geophysical Exploration
    • /
    • v.18 no.4
    • /
    • pp.223-231
    • /
    • 2015
  • Self-potential (SP) is sensitive to groundwater flow and there are many causes to generate SP. Among many mechanisms of SP, pore-fluid flow in porous media can generate potential without any external current source, which is referred to as electrokinetic potential or streaming potential. When calculating SP responses on the surface due to geothermal fluid within an engineered geothermal system (EGS) reservoir, SP anomaly is usually considered to be generated by fluid injection or production within the reservoir. However, SP anomaly can also result from geothermal water fluid within EGS reservoirs experiencing temperature changes between injection and production wells. For more precise simulation of SP responses, we developed an algorithm being able to take account of SP anomalies produced by not only water injection and production but also the fluid of geothermal water, based on three-dimensional finite-element-method employing tetrahedron elements; the developed algorithm can simulate electrical potential responses by both point source and volume source. After verifying the developed algorithm, we assumed a simple geothermal reservoir model and analyzed SP responses caused by geothermal water injection and production. We are going to further analyze SP responses for geothermal water in the presence of water production and injection, considering temperature distribution and geothermal water flow in the following research.

Applicability of Fuzzy Logic Based Data Integration to Geothermal Potential Mapping in Southern Gyeongsang Basin, Korea (경상분지 남부지역의 지열 부존 잠재력 평가를 위한 퍼지기반 자료통합의 적용성 연구)

  • Park, Maeng-Eon;Baek, Seung-Gyun;Sung, Kyu-Youl
    • Economic and Environmental Geology
    • /
    • v.40 no.3 s.184
    • /
    • pp.307-318
    • /
    • 2007
  • The occurrence of geothermal water has high correlates highly with fossil geothermal system. A fuzzy logic based data integration is applied for geothermal potential mapping in the Southern Gyeongsang Basin which is distributed in the regional fossil geothermal system. Several data sets are related with the origin and distribution of fossil geothermal system, such as the geological map, the density of lineaments, the aerial survey map of magnetic intensity, the map of hydrothermal alteration, the distribution density of hydrothermal mines, which were collected as thematic maps for the integration. Fuzzy membership functions for all thematic maps were compared to the locations of the spa hot springs, which were used as ground-truth control points. After integrating all thematic maps, the results of gamma operator (${\gamma}=0.1$) was showed the highest success rate, and new geothermal potential zone is prospected in some area.

Geothermal Power Generation using Enhanced or Engineered Geothermal System(EGS) (공학적인 지열시스템(EGS)을 이용한 지열발전 기술)

  • Hahn, Jeong-Sang;Han, Hyuk-Sang
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2008.10a
    • /
    • pp.3-32
    • /
    • 2008
  • The potential deep geothermal resources span a wide range of heat sources from the earth, including not only the more easily developed, currently economic hydrothermal resources; but also the earth's deeper, stored thermal energy, which is present anywhere. At shallow depths of 3,000~10,000m, the coincidence of substantial amounts heat in hot rock, fluids that heat up while flowing through the rock and permeability of connected fractures can result in natural hot water reservoirs. Although conventional hydrothermal resources which contain sufficient fluids at high temperatures and geo-pressures are used effectively for both electric and nonelectric applications in the world, they are somewhat limited in their location and ultimate potential for supplying electricity. A large portion of the world's geothermal resource base consists of hot dry rock(HDR) with limited permeability and porosity, an inadquate recharge of fluids and/or insufficient water for heat transport. An alternative known as engineered or enhanced geothermal systems(EGS), to dependence on naturally occurring hydrothermal reservoirs involves human intervention to engineer hydrothermal reservoirs in hot rocks for commercial use. Therefore EGS resources are with enormous potential for primary energy recovery using an engineered heat mining technology, which is designed to extract and utilize the earth's stored inexthermal energy. Because EGS resources have a large potential for the long term, United States focused his effort to provide 100GW of 24-hour-a-day base load electric-generating capacity by 2050.

  • PDF

Estimation of Theoretical and Technical Potentials of Geothermal Power Generation using Enhanced Geothermal System (우리나라 EGS 지열발전의 이론적 및 기술적 잠재량 평가)

  • Song, Yoon-Ho;Baek, Seung-Gyun;Kim, Hyoung-Chan;Lee, Tae-Jong
    • Economic and Environmental Geology
    • /
    • v.44 no.6
    • /
    • pp.513-523
    • /
    • 2011
  • We estimated geothermal power generation potential in Korea through Enhanced Geothermal System (EGS) technology following the recently proposed protocol which was endorsed by international organizations. Input thermal and physical data for estimation are density, specific heat and thermal conductivity measurements from 1,516 outcrop samples, 180 heat production, 352 heat flow, and 52 mean surface temperature data. Inland area was digitized into 34,742 grids of $1'{\times}1'$ size and temperature distribution and available heat were calculated for 1 km depth interval from 3 km down to 10 km. Thus estimated theoretical potential reached 6,975 GW which is 92 times total generation capacity of Korea in 2010. Technical potential down to 6.5 km and considering land accessibility, thermal recovery ratio of 0.14 and temperature drawdown factor of $10^{\circ}C$ was 19.6 GW. If we disregard temperature drawdown factor, which can be considered in estimating economic potential, the technical potential increases up to 56 GW.

Assessment of Geothermal Power Generation Potential According to EGS Potential Protocol (EGS Potential Protocol에 따른 우리나라 지열발전 잠재량 산정)

  • Song, Yoonho;Baek, Seung-Gyun;Kim, Hyoung Chan;Lee, Tae Jong
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.11a
    • /
    • pp.144-144
    • /
    • 2011
  • We have estimated power generation potential in Korea following the recently announced EGS protocol. According to the protocol, we calculated the theoretical potential first, which assumes 30 year operation, minimum temperature being surface temperature+$80^{\circ}C$, depth range being from 3 km to 10 km. In this new assessment the in-land area was digitized by 1' by 1' blocks, which is much finer than suggestion of the protocol (5'by 5'). Thus estimated theoretical potential reaches 6,975 GWe which is 92 times of the total power generation capacity in 2010. In the estimation of technical potential, we limited the depth range down to 6.5 km, assumed recovery factor as 0.14 and also counted for temperature drawdown factor of $10^{\circ}C$ following the protocol. Accessible in-land area excluding steep mountains, residence and industrial region, wet area and others covers 40.7% of total area. Finally, we could come up with 19.6 GWe for technical potential, which would be 56 GWe if we do not account for the temperature drawdown factor. These are important results in that we made the first potential assessment for geothermal power generation.

  • PDF

A Study on Deep Geothermal Energy and Potential of Geothermal Power Generation in Mongolia (몽골의 심부 지열에너지 자원과 지열발전에 관한 연구)

  • Hahn, Jeong-Sang;Yoon, Yun-Sang;Kiem, Young-Seek;Hahn, Chan;Park, Yu-Chul;Mok, Jong-Gu
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.8 no.3
    • /
    • pp.1-11
    • /
    • 2012
  • Mongolia has three(3) geothermal zones and eight(8) hydrogeothermal systems/regions that are, fold-fault platform/uplift zone, concave-largest subsidence zone, and mixed intermediate-transitional zone. Average temperature, heat flow, and geothermal gradient of hot springs in Arhangai located to fold-fault platform/uplift zone are $55.8^{\circ}C$, 60~110 mW/m2 and $35{\sim}50^{\circ}C/km$ respectively and those of Khentii situated in same zone are $80.5^{\circ}C$, 40~50 mW/m2, and $35{\sim}50^{\circ}C/km$ separately. Temperature of hydrothermal water at depth of 3,000 m is expected to be about $173{\sim}213^{\circ}C$ based on average geothermal gradient of $35{\sim}50^{\circ}C/km$. Among eight systems, Arhangai and Khentii located in A type hydrothermal system, Khovsgol in B type, Mongol Altai plateau in C type, and Over Arhangai in D type are the most feasible areas to develop geothermal power generation by Enhanced Geothermal System (EGS). Potential electric power generation by EGS is estimated about 2,760 kW at Tsenher, 1,752 kW at Tsagaan Sum, 2,928 kW at Khujir, 2,190 kW at Baga Shargaljuut, and 7,125 kW at Shargaljuut.

포항 지열 개발지역에서의 지열 저류층에 대한 SP 모델링

  • ;;;Kasumi Yasukawa
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2004.09a
    • /
    • pp.417-421
    • /
    • 2004
  • Self-potential (SP) survey was carried out at Pohang geothermal field. SP measurement showed clear positive anomaly at northern part of the test wells, which can be a up-flow zone of the deep geothermal water due to electrokinetic potential generated by hydrothermal circulation. To give a clearer image of the fluid flow pattern around the test wells, a two-dimensional numerical simulation was applied to construct a numerical block model of the fluid flow system based on SP and magnetotelluric survey results. The result suggests existence of two high permeability zones including the main manifestation area in the northern part of the test wells.

  • PDF

Development of deep-seated geothermal energy in the Pohang area, Korea (경북 포항지역에서의 심부 지열수자원 개발 사례)

  • Song, Yoonho;Lee, Tae-Jong;Kim, Hyoung-Chan
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.693-696
    • /
    • 2005
  • KIGAM (Korea Institute of Geoscience and Mineral Resources) launched a new project to develop the low-temperature geothermal water in the area showing high geothermal anomaly, north of Pohang city, for large-scale space heating. Surface geologic and geophysical surveys including Landsat 1M image analysis, gravity, magnetic, Magnetotelluric (MT) and controlled-source audio-frequency MT (CSAMT), and self-potential (SP) methods have been conducted and the possible fracture zone was found that would serve as deeply connected geothermal water conduit. In 2004, two test wells of 1.1km and 1.5km depths have been drilled and various kinds of borehole survey including geophysical logging, pumping test, SP monitoring, core logging and sample analysis have followed. Temperature of geothermal water at the bottom of 1.5km borehole reached over $70^{\circ}C$ and the pumping test showed that the reservoir contained huge amount of geothermal water. Drilling for the production well of 2 km depth is on going. After test utilization and the feasibility study, geothermal water developed from the production well is going to be provided to nearby apartments.

  • PDF

Assessment of geothermal potential in an area of sulfate-rich hot springs, Bugok, southern Korea

  • Park Seong-Sook;Yun Seong-Taek;Chae Gi-Tak;So Chil-Sup;Koh Yong-Kwon;Choi Hyeon-Su
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2006.04a
    • /
    • pp.303-306
    • /
    • 2006
  • Using a variety of chemical geothermometers we estimate the temperature of a deep geothermal reservoir in relation to thermal groundwater in the Bugok area, southern Korea, in order to assess the potential use of geothermal energy in South Korea. Thermal water at Bugok has been exploited down to about 400 m below the land surface and shows the highest outflow temperatures (up to $78{\circ}C$) in South Korea. Based on the hydrochemical data and occurrence, groundwater in Bugok can be classified into three groups: $Na-SO_4$ type thermal groundwater (CTGW) occurring in the central part (about 0.24 $km^2$) $Ca-HCO_3$ type cold groundwater (SCGW) occurring in shallow peripheral parts of CTGW; and the intermediate type groundwater (STGW). CTGW waters are typical of thermal water in the area, because they have the highest outflow temperatures and contain very high concentrations of Na, K and $SiO_2$ due to the sufficient reaction with silicate minerals in deep reservoir. Their enriched $SO_4$ was likely formed by gypsum dissolution. The major ion composition of CTGW shows the general approach to a partial equilibrium state with rocks at depth. The application of various alkali ion geothermometers yields temperature estimates in the range of 88 to $198{\circ}C$ for the thermal reservoir. Multiple mineral equilibrium calculation indicates asimilar but narrower temperature range between about 100 and $155{\circ}C$. These temperature estimates are not significantly higher than the measured outflow temperatures for CTGW Considering the heat loss during the ascent- of thermal waters, this fact may suggest that a thermal reservoir in the study area is likely located at relatively shallow depths (possibly close to the depth of preexisting wells). Therefore, we suggest a high potential for geothermal energy development around the Bugok area in southern Korea.

  • PDF