• Title/Summary/Keyword: geothermal heating and cooling system

Search Result 157, Processing Time 0.025 seconds

Development of a Cooling and Heating System for Greenhouse using Geothermal Energy (지열을 이용한 온실용 냉난방시스템 개발)

  • Lee Yong-Beom;Cho Seong-In;Lee Jae-Han;Kim Tae-Won
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.688-692
    • /
    • 2005
  • Importance of substitute energy has been increasing due to environmental issues and lack of fossil fuels. In addition, heating cost that occupies from 30 to $40\%$ of the total production cost in Korean protected cultivation needs to be reduced for profitability and global competition. But, studying on substitute energy to solve these problems has not been activated for Korean protected cultivation. Therefore, this study was conducted to develop a geothermal heat pump system for cool ing and heat ing of greenhouses at a lower cost than conventional hot air heater and air conditioner. Fundamental test of heat transfer characteristics in soil was conducted by computer simulation and controlled tests for its verification. Based on the results of the theoretical and empirical investigations, an optimum heat pump system was developed and the performance was evaluated for practical use in a greenhouse at the Pusan Horticultural Experiment Station. The system was compared with a conventional hot air heating system through a cucumber growing test and economic feasibility analysis. Results of the application test of the geothermal heat pump showed that with an initial setting of $15^{\circ}C$ the inside temperature of the greenhouse could be maintained between 15 and $17^{\circ}C$. Results of the cucumber growing test showed that there were no significant differences in average height, leaf length, leaf width, number of nods, leaf area, dry weight and yield between the plots wi th the geothermal heat pump system and a conventional hot air heater. Economic feasibility analysis indicated that the variable cost of the hot air heater could be saved $81.2\%$ using the geothermal heat pump system. It was concluded that the geothermal heat pump system might be a pertinent heating and cooling system for greenhouses because of the low operating cost and the use of environment-friendly geothermal energy.

  • PDF

A Sutdy on the Apllicability of the Energy Pile System on Substation (변전소 구조물의 에너지파일 시스템 적용성 연구)

  • Lee, Daesoo;Oh, Gidae;Lee, Kangyul
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.198-198
    • /
    • 2011
  • Cooling and Heating system using Geothermal energy in the country has shown rapid development in the research and business field during about 10 years. However, like other renewable energy sources, high initial construction cost is acting as an obstacle to apply widely. Therefore Energy pile system(Heat Exchanger inserted inside the structure pile) that can save about 25 % initial construction cost has been studied in European countries and recently being studied in our country. Therefore, KPECO(Korea Electric Power Corporation) is also studying energy pile system to improve cooling & heating system in substation that install about 200 pile. KPECO is aimed to make energy pile design, construction and maintenance standards because substation has good applicability. In this study, we studied to make new grout material and design program to make optimized design & counstruction method of energy pile system. And planing to peform field test for energy pile system in a 154 kV substation to obtain long-term behavior and efficiency of the system.

  • PDF

Heating Performance of Horizontal Geothermal Heat Pump System for Protected Horticulture (시설원예용 수평형 지열히트펌프의 난방 성능 해석)

  • Kang, Youn-Ku;Ryou, Young-Sun;Kang, Geum-Choon;Paek, Yee;Kim, Young-Joong
    • Journal of Biosystems Engineering
    • /
    • v.32 no.1 s.120
    • /
    • pp.30-36
    • /
    • 2007
  • Geothermal heat pump systems use the earth as a heat source in heating mode and a heat sink in cooling mode. These systems can be used for heating or cooling systems in farm facilities such as greenhouses for protected horticulture, cattle sheds, mushroom house, etc. A horizontal type means that a geothermal heat exchanger is laid in the trench buried in 1.2 to 1.8 m depth. Because a horizontal type has advantages of low installation, operation and maintenance costs compared to a vertical type, it is easy to be adopted to agriculture. In this study, to heat and cool farm facilities and obtain basic data for practical application of horizontal geothermal heat pump systems in agriculture, a horizontal geothermal heat pump system of 10 RT scale was installed in greenhouse. Heating performance of this system was estimated. The horizontal geothermal heat pump used in this study had heating COP of 4.57 at soil temperature of 14$^{\circ}C$ for depth of 1.75m and heating COP of 3.75 at soil temperature of 7$^{\circ}C$ for the same depth. The stratification of water temperature in heat tank appeared during the whole heat rejection period.

Heating Performance Analysis of Building Integrated Geothermal System With Radiant Floor Heating (복사패널이 적용된 건물일체형 지열원 시스템의 난방성능 분석)

  • Jin, Shangzhen;Lee, Jin-Uk;Kim, Taeyeon;Leigh, Seung-Bok
    • Journal of the Korean Solar Energy Society
    • /
    • v.32 no.5
    • /
    • pp.25-30
    • /
    • 2012
  • Ground source heat pumps(GSHPs) are among the most efficient and comfortable heating and cooling technologies currently available, because they use the earth's natural heat to provide heating, cooling, and often, water heating. And Building Integrated Geothermal System(BIGS) is one of GSHPs which install ground heat exchanger(GHE) in energy pile without borehole to save the investment cost. Therefore, the experiment is to evaluate the heating performance of BIGS in Korea. The experimental results indicate that the average heat pump COP and overall system's COP values are approximately 4.4 and 3.0 in one week. This study shows that the BIGS could be used for heating in Korea.

A Study on the Cooling Heating Performance Experiment by Refrigerant Auto Control of Geothermal Heat Pump (지열히트펌프 냉매자동조절에 따른 냉·난방 성능실험에 관한 연구)

  • Koo, Nam-Yeol;Seo, Seung-Il
    • Journal of the Korean Society for Geothermal and Hydrothermal Energy
    • /
    • v.11 no.1
    • /
    • pp.1-6
    • /
    • 2015
  • This study presents analysis of the experimental data meeting conditions of several applications in real time. The results of this experimental study are as follows: Respectively in cooling and heating performance, a refrigerant charge tank can take automatic control of variation of the refrigerant quantity by controling pressure and temperature of system and outlet water temperature. The COP shows 3.5 in cooling operation and 3.2 in heating operation. The refrigerant quantity increases 0.69 kJ/h. When the outdoor temperature decreases $1^{\circ}C$, Therefore if the temperature become lower from $25^{\circ}C$ to $-16^{\circ}C$, the refrigerant quantity increases about 9.5%. Compared to the normal state experiment results, the COP in automatic control of the refrigerant quantity rises roughly 10%.

A Study on Application of The Available Geothermal Energy From Riverbank(including Alluvial and Riverbed deposits) Filtration (강변여과수(충적층 및 하상)의 열원을 이용한 지열에너지 활용에 관한 연구)

  • Kim, Hyoung-Soo;Jung, Woo-Sung;Ahn, Young-Sub;Hwang, Ki-Sup
    • Proceedings of the SAREK Conference
    • /
    • 2006.06a
    • /
    • pp.209-214
    • /
    • 2006
  • In this study, application of groundwater thermal energy by use of riverbank filtration(RBF) system is reviewed and checked as an energy resources. Also, the cooling and heating system using RBF was developed in Chang-Won Waterwork site to examine the feasibility in real operation of the system. We estimates the roughly overall energy obtained from RBF system if the system is used in cooling and heating. The water temperature and room temperature have been monitored to evaluate the efficiency of the system and the preliminary results show that the geothermal energy obtained by RBF could be adopted in cooling and heating energy source efficiently.

  • PDF

Study on the Performance Evaluation of Smart Heating and Cooling Heat Pump System in a Balancing Well Cross-Conditioned Ground Heat Exchanger (Balancing Well 교차혼합 지중열교환기의 스마트 냉난방 히트펌프 시스템의 성능평가에 관한 연구)

  • Lee, Changhee;Kim, Donggyu;Yu, Byeoungseok;Kim, Booil
    • New & Renewable Energy
    • /
    • v.16 no.4
    • /
    • pp.41-48
    • /
    • 2020
  • This study performed a single hole operation method using a balancing well-cross-mixed underground heat exchanger, and conducted thermal performance studies of an SCW-type underground heat exchanger using a two-well. The study attempted to change the existing operating method of the two adjacent SCW underground heat exchangers with one ball each. The SCW-type geothermal heat exchanger is considered to enable up to 20% of bleed discharge at maximum load, which makes groundwater usage unequal. The efficiency factor of the geothermal system was improved by constructing the discharged water by cross-mixing two balancing wells to prevent the discharge of groundwater sources and keep the temperature of the underground heat exchanger constant. As a result of the cooling and heating operation with the existing SCW heat exchange system and the balancing well-cross-mixed heat exchange system, the measured performance coefficient improved by 23% and 12% in cooling and heating operations, respectively. In addition, when operating with a balanced cross-mixing heat exchange system, it has been confirmed that the initial basement temperature is constant with a standard deviation of 0.08 to 0.12℃.

Heating and Cooling Performance of a Ground Coupled Heat Pump System with Energy-Slab (에너지슬래브 적용 지열원 열펌프 시스템의 성능 특성에 관한 실증 연구)

  • Choi, Jong-Min
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.24 no.2
    • /
    • pp.196-203
    • /
    • 2012
  • Energy foundations and other thermo-active ground structure, energy wells, energy-slab, and pavement heating and cooling represent an innovative technology that contributes to environmental protection and provides substantial long-term cost savings and minimized maintenance. This paper focuses on earth-contact concrete elements that are already required for structural reasons, but which simultaneously work as heat exchangers. Pipes, energy slabs, filled with a heat carrier fluid are installed under conventional structural elements, forming the primary circuit of a geothermal energy system. The natural ground temperature is used as a heat source in winter and a heat sink in summer. The geothermal heat pump system with energy-slab represented very high heating and cooling performance due to the stability of EWT from energy slab. However, the performance of it seemed to be affected by the atmospheric air temperature.

A Study on the Seasonal Performances Evaluation of the Horizontal-type Geothermal Heat Exchanger Installed in the Foundation Slabs of Complex Building (주상복합 건축물의 기초 슬래브에 설치된 수평형 지열교환기의 계절별 성능평가)

  • Hwang, Kwang-Il;Woo, Sang-Woo;Kim, Joong-Hun;Shin, Seung-Ho;Kim, Yong-Shik
    • Journal of the Korean Solar Energy Society
    • /
    • v.27 no.2
    • /
    • pp.11-17
    • /
    • 2007
  • This study evaluates the seasonal performances of the horizontal-type geothermal heat exchanger(HGHEX) installed into the foundation slabs of the complex building located at Seoul. The geothermal system is consisted with totally 31,860m long HGHEX, 16 GSHPs (Ground-source Heat Pump) and 8 circulation pumps. This system supplies cooling and heating to the lobby(F1) and the common spaces(BF1). The average heat exchange temperature differences are $2.7^{\circ}C\;and\;2.5^{\circ}C$ in the summer, $1.5^{\circ}C\;and\;0.5^{\circ}C$ in the winter for the F1 and BF1 respectively. From these results, approximately 400Gcal and 180Gcal of geothermal energy are assumed to have been used during the summer and winter seasons respectively. As a conclusion, the geothermal system is reviewed as a effective utility for heating and cooling at the point of seasonal performances.

Analysis of Energy Performance & Energy Saving with Geothermal Heat Pump System Using TRNSYS Program in a Large Scale Shopping Store (TRNSYS 프로그램을 이용한 대형쇼핑매장 에너지성능해석 및 지열시스템을 도입하는 경우 에너지절약 특성분석)

  • Hong, Won-Pyo
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.29 no.1
    • /
    • pp.47-56
    • /
    • 2015
  • Energy consumption in buildings is currently a real problem. That is why both assessment of energy performance and effective energy management including renewable energy system are essential. Thus, this paper focuses on a case study to analyze the energy performance and cooling & heating energy saving of a large scale shopping store in Daejeon city. The reference building is simulated by using TRNSYS dynamic simulation tool to examine its annual energy consumption. For annual energy analysis of building, one year energy consumption is surveyed in the field. The related study is carried out in large scale shopping store to investigate the energy consumption and energy use trend of heating, cooling, hot water, lighting, ventilation, equipments and other. The evaluation of energy performance of the geothermal heat pump system installed in a large scale shopping store is also analyzed by TRNSYS tool. From simulation results, it evaluated that the geothermal heat pump system is effective energy savings method in large scale shopping store.