• Title/Summary/Keyword: geotechnical stabilization

Search Result 129, Processing Time 0.027 seconds

The Geotechnical Properties of Municipal Solid Waste Incinerator Fly Ash and Cement Stabilization (도시고형폐기물 소각 비산재의 지반공학적 특성 및 시멘트 안정화에 관한 연구)

  • 조진우;김지용;한상재;김수삼
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.03b
    • /
    • pp.528-535
    • /
    • 2000
  • Solid waste incinerator is expected to become widely used in Korea. The incineration of solid waste produces large quantities of bottom and fly ash, which has been disposed of primary by landfilling. However, as landfills become undesirable other disposal method are being sought. In this study, an experimental research is conducted to determine the geotechnical properties of municipal solid waste incinerator fly ash(MSWIF) in order to evaluate the feasibility of using the material for geotechnical applications. Basic pysicochemical characteristics, moisture-density relationship, strength, permeability, and leaching characteristics are examined. The results of MSWIF are compared to other MSWIF and coal fly ash which are used as construction material. In addition, the effectiveness of cement stabilization is investigated using various mix ratios. The result of stabilized mixes are compared to the unstabilized material. Cement stabilization is found to be very effective in reducing permeability, increasing strength, and immobilizing heavy metals. This results indicate that MSWIF with cement stabilization may be used effectively for geotechnical application.

  • PDF

Physical Characteristics of Soft Clay Improved by PFA Stabilization Agent (제지회계 지반개량재로 처리된 연약점토의 물리적 특성)

  • 김광빈;이용안;김유성
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2002.10a
    • /
    • pp.561-568
    • /
    • 2002
  • PFA(Paper Fly Ash) are reclaimed mainly or used in cement industry field as mixture agent in terms of materials recycling. Recently, research for recycling PFA as embankment materials or soil stabilization agent are undergoing in geotechnical engineering field. In this study, physical characteristics of PFA stabilization agent-soil admixtures are examined in change of water content, void ratio, consistency, grain distribution, specific gravity and density. Futhermore, the physical characteristics are compared with unconfined strength as engineering characteristics. Test results showed that unconfined strength and density are increased with increasing of PFA stabilization agent mixed ratio. On the other hand, specific gravity, void ratio and water content are decreased with increasing of PFA stabilization agent mixed ratio. It would be concluded that natural high water content ratio weak soil could be highly improved engineering and physical characteristics with PFA stabilization agent

  • PDF

Engineering properties of expansive clayey soil stabilized with lime and perlite

  • Calik, Umit;Sadoglu, Erol
    • Geomechanics and Engineering
    • /
    • v.6 no.4
    • /
    • pp.403-418
    • /
    • 2014
  • There are around 6700 millions tons of perlite reserves in the world. Although perlite possesses pozzolanic properties, it has not been so far used in soil stabilization. In this study, stabilization with perlite and lime of an expansive clayey soil containing smectite group clay minerals such as montmorillonite and nontronite was investigated experimentally. For this purpose, test mixtures were prepared with 8% of lime (optimum lime ratio of the soil) and without lime by adding 0%, 10%, 20%, 30%, 40% and 50% of perlite. Geotechnical properties such as compaction, Atterberg limits, swelling, unconfined compressive strength of the mixtures and changes of these properties depending on perlite ratio and time were determined. The test results show that stabilization of the soil with combination of perlite and lime improves the geotechnical properties better than those of perlite or lime alone. This experimental study unveils that the mixture containing 30% perlite and 8% lime is the optimum solution in stabilization of the soil with respect to strength.

A Study on the Design-parameter of Mixed Ground by Using Cement-type Stabilizer (시멘트계 고화재에 의해 혼합처리된 지반의 설계정수에 관한 연구)

  • 천병식;임해식;전진규
    • Journal of the Korean Geotechnical Society
    • /
    • v.16 no.2
    • /
    • pp.79-89
    • /
    • 2000
  • The application of stabilization method has increased because of short construction periods, no environmental problems with dumped and replaced soil, assurance of required strength and economical effect with mid to small size construction. The unconfined and triaxial(UU-condition) compression tests were executed with each mixing sample for the study of the improvement effects and the effect of design-parameters by the stabilization methods. Three typical stabilizers, which are representative in Korea, were applied in this study, and three common soils(very soft clay, general weathered soil, common clay), which are common in Korea, were used in this study. In this study, the effect of engineering factors(soils, stabilizers and water contents, etc.) which are important parameters for the improvement effects of mixed ground by stabilizers, was analyzed. As results, the tendencies of design-parameters(unconfined compression strength, deformation modulus and strength parameter) are presented and the criteria of the application of stabilization methods are suggested.

  • PDF

Effect of cement stabilization on geotechnical properties of sandy soils

  • Shooshpasha, Issa;Shirvani, Reza Alijani
    • Geomechanics and Engineering
    • /
    • v.8 no.1
    • /
    • pp.17-31
    • /
    • 2015
  • An experimental program was performed to study the effects of cement stabilization on the geotechnical characteristics of sandy soils. Stabilizing agent included lime Portland cement, and was added in percentages of 2.5, 5 and 7.5% by dry weight of the soils. An analysis of the mechanical behavior of the soil is performed from the interpretation of results from unconfined compression tests and direct shear tests. Cylindrical and cube samples were prepared at optimum moisture content and maximum dry unit weight for unconfined compression and direct shear tests, respectively. Samples were cured for 7, 14 and 28 days after which they were tested. Based on the experimental investigations, the utilization of cemented specimens increased strength parameters, reduced displacement at failure, and changed soil behavior to a noticeable brittle behavior.

Application of Formed Urethane to Slope Stabilizaton and Backfill Material (발포우레탄에 의한 사면안정화 및 사면요철충진재로의 활용성 연구)

  • 정하익;조진우;구호본;정연수
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2000.11a
    • /
    • pp.635-638
    • /
    • 2000
  • The feasibility study on the application of formed urethane to slope stabilization and backfill material was carried out through laboratory and field test. The physical and chemical properties of formed urethane were investigated. The slope stabilization effect of urethane was examined in the field occurred slope failure. The formed urethane and sprayed urethane admixed with seed was applied to protect the slope failure in this study.

  • PDF

Strength and compressibility characteristics of peat stabilized with sand columns

  • Jorat, M. Ehsan;Kreiter, Stefan;Morz, Tobias;Moon, Vicki;de Lange, Willem
    • Geomechanics and Engineering
    • /
    • v.5 no.6
    • /
    • pp.575-594
    • /
    • 2013
  • Organic soils exhibit problematic properties such as high compressibility and low shear strength; these properties may cause differential settlement or failure in structures built on such soils. Organic soil removal or stabilization are the most important methods to overcome geotechnical problems related to peat soils' engineering characteristics. This paper presents soil mechanical intervention for stabilization of peat with sand columns and focuses on a comparison between the mechanical characteristics of undisturbed peat and peat stabilized with 20%, 30% and 40% of sand on the laboratory scale. Cylindrical columns were extruded in different diameters through a nearly undisturbed peat sample in the laboratory and filled with sand. By adding sand columns to peat, higher permeability, higher shear strength and a faster consolidation was achieved. The sample with 70% peat and 30% sand displayed the most reliable compressibility properties. This can be attributed to proper drainage provided by sand columns for peat in this specific percentage. It was observed that the granular texture of sand also increased the friction angle of peat. The addition of 30% sand led to the highest shear strength among all mixtures considered. The peat samples with 40% sand were sampled with two and three sand columns and tested in direct shear and consolidation tests to evaluate the influence of the number and geometry of sand columns. Samples with three sand columns showed higher compressibility and shear strength. Following the results of this laboratory study it appears that the introduction of sand columns could be suitable for geotechnical peat stabilization in the field scale.

Soil Stabilization with time and Rice Husk Ash (Rice husk ash를 이용한 토질안정처리)

  • 민덕기;황광모;김현도;황택진
    • Journal of the Korean Geotechnical Society
    • /
    • v.18 no.5
    • /
    • pp.19-25
    • /
    • 2002
  • In this paper, a laboratory investigation was carried out to change the geotechnical properties of clayey soil with quicklime and rice husk ash for surplus soil strength improvement. The organic content of soils is 8.67%, 6.45% and 3.84% respectively. The geotechnical properties of treated soil were evaluated by a series of laboratory unconfined compression test, consolidation test and etc. The test results indicated that the presence of RHA enhanced the efficiency of lime stabilization. Especially, the increase in strength is very high at the first stage, while the significant improvement occurs in a sample C with organic content of 3.84%. These results can be identified by X-ray diffraction(XRD) and scanning electron microscope(SEM). The results of consolidation test indicate that the presence of RHA with lime reduces the properties of swelling of soil. Thus, it was verified that the addition of RHA is more effective than using only lime for soil stabilization.