• Title/Summary/Keyword: geotechnical engineering

Search Result 4,595, Processing Time 0.029 seconds

Grouting effects evaluation of water-rich faults and its engineering application in Qingdao Jiaozhou Bay Subsea Tunnel, China

  • Zhang, Jian;Li, Shucai;Li, Liping;Zhang, Qianqing;Xu, Zhenhao;Wu, Jing;He, Peng
    • Geomechanics and Engineering
    • /
    • v.12 no.1
    • /
    • pp.35-52
    • /
    • 2017
  • In order to evaluate the grouting effects of water-rich fault in tunnels systematically, a feasible and scientific method is introduced based on the extension theory. First, eight main influencing factors are chosen as evaluation indexes by analyzing the changes of permeability, mechanical properties and deformation of surrounding rocks. The model of evaluating grouting effects based on the extension theory is established following this. According to four quality grades of grouting effects, normalization of evaluation indexes is carried out, aiming to meet the requirement of extension theory on data format. The index weight is allocated by adopting the entropy method. Finally, the model is applied to the grouting effects evaluation in water-rich fault F4-4 of Qingdao Jiaozhou Bay Subsea Tunnel, China. The evaluation results are in good agreement with the test results on the site, which shows that the evaluation model is feasible in this field, providing a powerful tool for systematically evaluating the grouting effects of water-rich fault in tunnels.

A spiral variable section capillary model for piping hydraulic gradient of soils causing water/mud inrush in tunnels

  • Lin, P.;Li, S.C.;Xu, Z.H.;Li, L.P.;Huang, X.;He, S.J.;Chen, Z.W.;Wang, J.
    • Geomechanics and Engineering
    • /
    • v.13 no.6
    • /
    • pp.947-961
    • /
    • 2017
  • An innovative spiral variable-section capillary model is established for piping critical hydraulic gradient of cohesion-less soils causing water/mud inrush in tunnels. The relationship between the actual winding seepage channel and grain-size distribution, porosity, and permeability is established in the model. Soils are classified into coarse particles and fine particles according to the grain-size distribution. The piping critical hydraulic gradient is obtained by analyzing starting modes of fine particles and solving corresponding moment equilibrium equations. Gravities, drag forces, uplift forces and frictions are analyzed in moment equilibrium equations. The influence of drag force and uplift force on incipient motion is generally expounded based on the mechanical analysis. Two cases are studied with the innovative capillary model. The critical hydraulic gradient of each kind of sandy gravels with a bimodal grain-size-distribution is obtained in case one, and results have a good agreement with previous experimental observations. The relationships between the content of fine particles and the critical hydraulic gradient of seepage failure are analyzed in case two, and the changing tendency of the critical hydraulic gradient is accordant with results of experiments.

The development of statistical analysis module for the part of the new standardized geotechnical database computer program (복합공간 개발을 위한 지반정보 관리시스템의 통계분석 모듈 개발)

  • Kim, Jeong-Yeol;Kim, Hyun-Ki;Kim, Han-Saem;Chung, Choong-Ki
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2010.09a
    • /
    • pp.955-959
    • /
    • 2010
  • The statistical analysis module is developed for the part of the new standardized geotechnical database computer program. The purpose of this module is that the geotechnical engineers can optimize the underground construction process of the underdeveloped urban area rehabilitation by this module providing the statistical information for the geotechnical decision making and risk assessment. This module will be modified to offer the statistical information sustainable for the newly adapted geotechnical limit-state design methods.

  • PDF

Study on anchorage effect on fractured rock

  • Wang, Jing;Li, Shu-Cai;Li, Li-Ping;Zhu, Weishen;Zhang, Qian-Qing;Song, Shu-Guang
    • Steel and Composite Structures
    • /
    • v.17 no.6
    • /
    • pp.791-801
    • /
    • 2014
  • The effects of anchor on fractured specimens in splitting test are simulated by DDARF method, the results of which are compared with laboratory test results. They agree well with each other. The paper contents also use the laboratory model test. The main research objects are three kinds of specimens, namely intact specimens, jointed specimens and anchored-jointed specimens. The results showed that with the joint angle increased, the weakening effects of jointed rock mass are more obvious. At these points, the rock bolts' strengthening effects on the specimens have become more significant. There is a significant impact on the failure modes of rock mass by the joint and the anchorage.

법규소식

  • Korea Association of Professional Engineers In Geotechnical Engineering
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.51-53
    • /
    • 2006
  • PDF

기술사 출제문제

  • Korea Association of Professional Engineers In Geotechnical Engineering
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.54-57
    • /
    • 2006
  • PDF

토기회 소식

  • Korea Association of Professional Engineers In Geotechnical Engineering
    • 지반과기술
    • /
    • v.3 no.3
    • /
    • pp.65-69
    • /
    • 2006
  • PDF

토기회 소식

  • Korea Association of Professional Engineers In Geotechnical Engineering
    • 지반과기술
    • /
    • v.3 no.4
    • /
    • pp.85-86
    • /
    • 2006
  • PDF

법규소식

  • Korea Association of Professional Engineers In Geotechnical Engineering
    • 지반과기술
    • /
    • v.3 no.4
    • /
    • pp.72-78
    • /
    • 2006
  • PDF

Geotechnical Characteristics of a Waste Lime Embankment (부산물석회 성토지반의 지반공학적 특성)

  • Hong, Seung Seo;Kim, YoungSeok;Bae, Gu-Jin
    • The Journal of Engineering Geology
    • /
    • v.25 no.4
    • /
    • pp.547-555
    • /
    • 2015
  • This work investigated the geotechnical characteristics of an embankment constructed with a mixture of soil and waste lime. The waste lime was a by-product of the manufacture of Na2CO3 at a near by chemical factory in Incheon. Field measurements were take three years after construction, and included geotechnical tests such as field density measurement, plate loading testing, dynamic cone penetration testing, and field CBR measurement. The results indicate that the geotechnical characteristics of waste lime mixtures are suitable for embankment works.