• Title/Summary/Keyword: geosynthetic-reinforced segmental retaining walls

Search Result 13, Processing Time 0.022 seconds

Case Study on the Countermeasure Methods and Collapsed Sources of Segmental Retaining Wall Considering Site Conditions (시공환경을 고려한 블록식 보강토옹벽의 붕괴요인 분석 및 대책방안 사례연구)

  • Han, Jung-Geun;Cho, Sam-Deok;Jeong, Sang-Seom;Lee, Kwang-Wo;Kim, Ji-Sun
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.3
    • /
    • pp.35-43
    • /
    • 2005
  • The geosynthetic reinforced segmental retaining walls(SRW) are improved that the disadvantage of existed retaining wall and the workability in field. Recently, the segmental retaining wall is replacing the exited wall because it is quickly advanced to using by the block in-situ. The use, therefore, is increasing. But, the trends of the large scaled construction was developed that the problems likely to crack and collapse, those are caused of careless in design and construction of SRW not considering about various surrounding conditions. In this study, the cause analysis on destructed SRW was carried out that based on the datum of measured displacement of walls, rainfall features and ground sounding conditions. Also, the analysis of the global slope stability was carried out on collapsed section and non-collapsed section using critical equilibrium method. For the rational stability and analysis of slope including SRW structure, the site conditions including situations of topography, ground and histories of construction and collapse etc should be considered. The rational countermeasure methods for non-collapsed and collapsed areas may be sustained as much as possible current state.

  • PDF

Assessments of Creep Properties of Strip Type fiber Reinforcement (띠형 섬유보강재의 크리프 특성 평가)

  • 전한용;유중조;김홍택;김경모;김영윤
    • Journal of the Korean Geotechnical Society
    • /
    • v.19 no.2
    • /
    • pp.279-289
    • /
    • 2003
  • Geosynthetic reinforced earth wall was introduced about 20 years ago and many structures have been constructed. Especially, segmental concrete panel facing and friction tie system are the most popular system in Korea, and this friction tie was composed of high tenacity PET filament and LDPE(Low Density Polyethylene) sheath. Due to the lack of direct-test results, design coefficients of friction tie (creep reduction factor) had been determined by quoting the previous and the foreign reference data. This is an unreasonable fact for the use of friction ties. In this study, the creep tests were performed to evaluate the creep behavior of friction tie, and the reduction factor of creep was calculated for the correct design of geosynthetic reinforced earth retaining walls. From the test results, finally it was found that the allowable creep strength of friction tie is 60% of Tult during service life, and creep reduction factor is 1.67 for each grade of friction ties.

Long-Term Performance of Full-Scale Tiered Geogrid Reinforced Wall under Sustained Load (실대형 계단식 보강토 옹벽의 지속 하중하에서의 장기변형 거동 특성)

  • Yoo, Chung-Sik;Jung, Hye-Young;Lee, Bong-Won
    • Journal of the Korean Geosynthetics Society
    • /
    • v.4 no.2
    • /
    • pp.29-38
    • /
    • 2005
  • It is essential to take consideration of long-term deformation characteristics of mechanically stabilized earth wall user sustained and repeated loads for design and construction, especially for use as part of permanent structures. This paper presents the long-term performance of a full-scale geogrid reinforced segmental retaining wall results based on the measured strains in geogrids for three years. The results indicate that the reinforcement tensile strains tend to continuously increase after wall completion with the increase being more pronounced in the reinforcement layers in the lower tier. It can be concluded that the long-term deformation should be taken in account for walls constructed as part of permanent structures for which wall deformation should be controlled.

  • PDF