• Title/Summary/Keyword: geosynthetic

Search Result 245, Processing Time 0.022 seconds

Geosynthetic Reinforced Soil Method for Restoration of Debris Flow Failure Slopes (쇄설성 유동파괴 사면 복구를 위한 토목섬유 보강토 공법)

  • Cho Yong-Seong;Kim You-Seong;Park Inn-Joon
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.5
    • /
    • pp.93-101
    • /
    • 2005
  • The formation of slopes is unavoidable under the special circumstance of Korea where $7%$ of the whole area are composed of mountains and civil engineering projects such as road and site developments are increasing with industrial development and horizontal expansions of urban area. Stability of slopes is one of quite important issues under special meteorological characteristics that over two-thirds of annual average rainfall is concentrated in summer season and the localized torrential downpour is getting more frequent recently. As a result of these circumstances, partial slope failures by debris flow of the high water content soils occur frequently in cut soil slopes. In this case of debris flow slope failure, slope declination method is selected fur the stable recovery because it is impossible to recover entirely by existing recovery methods. Seeding or special grass planting methods are followed separately without exception. The method by which entire recover with bigger stability ratio would be possible and grass planting work would be done simultaneously is developed. For debris flow failure slopes, this study secured the safety of slopes by preventing the inflow of rainwater and scour using geosynthetics-reinforced embankment, and created nature-friendly slopes by planting trees on the slopes.

A Stability Analysis of Geosynthetics Reinforced Soil Slopes II - Evaluation of Required Reinforcement Tensile Force - (토목섬유 보강 성토사면의 안정해석 II. - 소요 보강재 인장력 평가 -)

  • Kim Kyeong-Mo;Kim Hong-Taek;Lee Eun-Soo;Kim Young-Yoon;Ahn Kwang-Kuk
    • Journal of the Korean Geotechnical Society
    • /
    • v.21 no.8
    • /
    • pp.107-116
    • /
    • 2005
  • Generally, when the stability of the geosynthetic reinforced soil slopes is analyzed, the required tensile forces of each reinforcement layers are calculated from total reinforcement forces which are necessary to retain the equilibrium state of slip mass in which the slip surfaces are assumed to be a linear or bilinear. It is assumed that the reinforcement forces are increased or constant with depth. However, according to the instrumented field data and laboratory model test results, the maximum tensile strain of reinforcement in a reinforced soil slope is developed in a certain elevation, not a bottom of the slope. In the concept of reinforced soil, postulated failure surfaces are the traces of the position in which the reinforcement tensile forces are maximum in the layer, and the reinforcement tensile forces are related to the stress state on the postulated failure surface. Therefore, in this study, based on the distribution of normal stress on the slip surface, a new method for the evaluation of required tensile forces is suggested and a number of the instrumented field data are analyzed by newly suggested method. As a result, it is shown that the newly suggested method produces relatively accurate reinforcement tension forces.

Analysis of Permanent Deformation under Repetitive Load Based on Degraded Secant Modulus (할선탄성계수를 이용한 반복하중 하 지반의 영구변형 해석)

  • Ahn, Jaehun;Oh, Jeongho;Shin, Hosung
    • Journal of the Korean Geotechnical Society
    • /
    • v.29 no.2
    • /
    • pp.15-21
    • /
    • 2013
  • The analysis of long-term performance of pavement sections under wheel loads is normally conducted in two separated steps. First the resilient behavior of the pavement is calculated assuming the pavement is a layered or discrete elastic medium, and then the permanent deformation is evaluated based on empirical permanent displacement equations. Material properties required in both steps can be obtained from cyclic triaxial tests, in other words, resilient and permanent deformation tests. While this analytical approach is simple and convenient, it does not consider the modulus degradation caused by cyclic loads, and some types of reinforcements such as geosynthetic cannot be modeled in this type of analysis. A model for degraded secant modulus is proposed and suggested to be used for the analysis of permanent behavior of unpaved roadway sections. The parameter for suggested model can be obtained from cyclic triaxial tests, regular practice in pavement engineering. Examples to estimate the model parameters are presented based on both laboratory permanent deformation test and large-scale plate load test.

Soil Arching in Embarikments Suppoyed by Piles with Geosynthethics (말뚝과 토목섬유로 지지된 성토지반의 아칭효과)

  • Hong, Won-Pyo;Lee, Jae-Ho
    • Journal of the Korean Geotechnical Society
    • /
    • v.23 no.6
    • /
    • pp.53-66
    • /
    • 2007
  • A series of model tests were performed to investigate the soil arching effect in embankments supported by piles with geosynthetics. In the model tests, model piles with isolated cap were inserted through the holes in a steel plate, which could be operated up and down. Then geosynthetics was laid on the pile caps below sand fills. The settlement of soft ground was simulated by lowering the plate. As the plate was lowered, the soil arching was mobilized in the embankments. The deformation of both the sand fills and geosynthetics were captured by camera. Also the loads acting on pile cap and the tensile strain of geosynthetics were monitored by data logging system. Model tests showed that the embankment loads transferred on pile cap by soil arching Increased rapidly with settlement of the soft ground. In case of the absence of geosynthetics, the loads acting on pile caps dropped to residual value after peak value, whereas loads on pile caps gradually increased until constant value in case of geosynthetic-reinforced. This illustrated that reinforcing with the geosynthetics has a good effect to restrain the settlement of embankments. Also, the deformation shape of geosynthetics between pile caps was circular. The embankment loads transferred on pile caps can be estimated by considering both soil arching and tensile strain of geosynthetics in embankments supported by piles with geosynthetics.

Analysis of Applicability of Rapid Hardening Composite Mat to Railway Sites (초속경 복합매트의 철도현장 적용성 분석)

  • Jang, Seong Min;Yoo, Hyun Sang;Oh, Dong Wook;Batchimeg, Banzragchgarav;Jung, Hyuk Sang
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.44 no.1
    • /
    • pp.109-116
    • /
    • 2024
  • The Rapid Hardening Composite Mat (RHCM) is a product that improves the initial strength development speed of conventional Geosynthetic Cementitious Composite Mats (GCCM). It offers the advantage of quickly securing sufficient strength in railway slopes with insufficient formation level, and provides benefits such as preventing slope erosion and inhibiting vegetation growth. In this study, an analysis of the practical applicability of RHCM in railway settings was conducted through experimentation. The on-site applicability was assessed by categorizing it into fire resistance, durability, and stability, and conducting combustibility test, ground contact pressure test, and daily displacement analyses. In the case of South Korea, where a significant portion of the territory is composed of forested areas, the prevention of slope fires is imperative. To analyze the fire resistance of RHCM, combustibility tests were conducted as an essential measure. Durability was assessed through ground contact pressure tests to analyze the deformation and potential damage of RHCM caused by the inevitable use of small to medium-sized equipment on the construction surface. Furthermore, daily displacement analysis was conducted to evaluate the structural stability by comparing and analyzing the displacement and behavior occurring during the application of RHCM with railway slope maintenance criteria. As a result of the experiments, the RHCM was analyzed to meet the criteria for heat release rate and gas toxicity. Furthermore, the ground contact pressure was observed to be consistently above 50 kPa during the curing period of 4 to 24 hours under all conditions. Additionally, the daily displacement analyzed through field site experiments ranged from -1.7 mm to 1.01 mm, confirming compliance with the criteria.