• Title/Summary/Keyword: geophysics

Search Result 1,292, Processing Time 0.029 seconds

Development of a CPInterface (COMSOL-PyLith Interface) for Finite Source Inversion using the Physics-based Green's Function Matrix (물리 기반 유한 단층 미끌림 역산을 위한 CPInterface (COMSOL-PyLith Interface) 개발)

  • Minsu Kim;Byung-Dal So
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.4
    • /
    • pp.268-274
    • /
    • 2023
  • Finite source inversion is performed with a Green's function matrix and geodetic coseismic displacement. Conventionally, the Green's function matrix is constructed using the Okada model (Okada, 1985). However, for more realistic earthquake simulations, recent research has widely adopted the physics-based model, which can consider various material properties such as elasticity, viscoelasticity, and elastoplasticity. We used the physics-based software PyLith, which is suitable for earthquake modeling. However, the PyLith does not provide a mesh generator, which makes it difficult to perform finite source inversions that require numerous subfaults and observation points within the model. Therefore, in this study, we developed CPInterface (COMSOL-PyLith Interface) to improve the convenience of finite source inversion by combining the processes of creating a numerical model including sub-faults and observation points, simulating earthquake modeling, and constructing a Green's function matrix. CPInterface combines the grid generator of COMSOL with PyLith to generate the Green's function matrix automatically. CPInterface controls model and fault information with simple parameters. In addition, elastic subsurface anomalies and GPS observations can be placed flexibly in the model. CPInterface is expected to enhance the accessibility of physics-based finite source inversions by automatically generating the Green's function matrix.

Single-Channel Seismic Data Processing via Singular Spectrum Analysis (특이 스펙트럼 분석 기반 단일 채널 탄성파 자료처리 연구)

  • Woodon Jeong;Chanhee Lee;Seung-Goo Kang
    • Geophysics and Geophysical Exploration
    • /
    • v.27 no.2
    • /
    • pp.91-107
    • /
    • 2024
  • Single-channel seismic exploration has proven effective in delineating subsurface geological structures using small-scale survey systems. The seismic data acquired through zero- or near-offset methods directly capture subsurface features along the vertical axis, facilitating the construction of corresponding seismic sections. However, substantial noise in single-channel seismic data hampers precise interpretation because of the low signal-to-noise ratio. This study introduces a novel approach that integrate noise reduction and signal enhancement via matrix rank optimization to address this issue. Unlike conventional rank-reduction methods, which retain selected singular values to mitigate random noise, our method optimizes the entire singular value spectrum, thus effectively tackling both random and erratic noises commonly found in environments with low signal-to-noise ratio. Additionally, to enhance the horizontal continuity of seismic events and mitigate signal loss during noise reduction, we introduced an adaptive weighting factor computed from the eigenimage of the seismic section. To access the robustness of the proposed method, we conducted numerical experiments using single-channel Sparker seismic data from the Chukchi Plateau in the Arctic Ocean. The results demonstrated that the seismic sections had significantly improved signal-to-noise ratios and minimal signal loss. These advancements hold promise for enhancing single-channel and high-resolution seismic surveys and aiding in the identification of marine development and submarine geological hazards in domestic coastal areas.

SAR APPLICATION POLICY STUDY - ANALYSIS OF SAR-RELATED JOURNAL PAPERS

  • Lee, Hoon-Yol
    • Proceedings of the KSRS Conference
    • /
    • 2005.10a
    • /
    • pp.229-232
    • /
    • 2005
  • This paper presents a preliminary analysis result on SAR-related journal papers published since 1960s. Abstracts of more than 2700 peer-reviewed English journal papers were collected and classified into various categories according to their systems, techniques, and application fields. Statistics on each category were provided so that one can understand historical and on-going development in SAR systems, techniques, and a variety of application fields such as land, ocean, cryosphere and atmosphere. This statistical data would be an essential guideline to establish a future SAR system application and satellite manoeuvring policy.

  • PDF

Classification of the vegetated terrain using polarimetric SAR processing techniques

  • Park Sang-Eun;Moon Wooil M
    • Proceedings of the KSRS Conference
    • /
    • 2004.10a
    • /
    • pp.389-392
    • /
    • 2004
  • Classification of Earth natural components within a full polarimetric SAR image is one of the most important applications of radar polarimetry in remote sensing. In this paper, the unsupervised classification algorithms based on the combined use of the polarimetric processing technique such as the target decomposition and statistical complex Wishart classification method are evaluated and applied to vegetated terrain in Jeju volcanic island.

  • PDF

CORRECTION OF THE EFFECT OF RELATIVE WIND DIRECTION ON WIND SPEED DERIVED BY ADVANCED MICROWAVE SCANNING RADIOMETER

  • Konda, Masanori;Shibata, Akira
    • Proceedings of the KSRS Conference
    • /
    • v.1
    • /
    • pp.386-389
    • /
    • 2006
  • The sea surface wind speed (SSWS) derived by microwave radiometer can be contaminated by change of microwave brightness temperature owing to the angle between the sensor azimuth and the wind direction (Relative Wind Direction). We attempt to correct the contamination to the SSWS derived by Advanced Microwave Scanning Radiometer (AMSR) on Advanced Earth Observing Satellite II (ADEOS-II), by applying the method proposed by Konda and Shibata (2004). The improvement of accuracy of the SSWS estimation amounts to roughly 60% of the error caused by the RWD effect.

  • PDF

A CODE FOR CALCULATING STATIC MODEL STELLAR ATMOSPHERES

  • Nouh, M.I.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.3
    • /
    • pp.47-54
    • /
    • 2009
  • In this paper we present an independent FORTRAN code for calculating LTE-plane-parallel model atmospheres. The transfer equation has been solved using Avrett and Loeser method. It is shown that, using an approximate non-gray temperature distribution together with the iteration factors method (Simonneau and Crivellari) for correcting the temperature distribution reduce the number of iteration required to achieve the condition of radiative equilibrium. Preliminary results for pure helium model atmospheres are presented.

KINEMATICAL FOCUS ON NGC 7086

  • Tadross, A.L.
    • Journal of The Korean Astronomical Society
    • /
    • v.38 no.4
    • /
    • pp.423-428
    • /
    • 2005
  • The main physical parameters; the cluster center, distance, radius, age, reddening, and visual absorbtion; have been re-estimated and improved for the open cluster NGC 7086. The metal abundance, galactic distances, membership richness, luminosity function, mass function, and the total mass of NGC 7086 have been examined for the first time here using Monet et al. (2003) catalog.

HAMILTONIAN OF A SECOND ORDER TWO-LAYER EARTH MODEL

  • Selim, H.H.
    • Journal of The Korean Astronomical Society
    • /
    • v.40 no.2
    • /
    • pp.49-60
    • /
    • 2007
  • This paper deals with the theory for rotational motion of a two-layer Earth model (an inelastic mantle and liquid core) including the dissipation in the mantle-core boundary(CMB) along with tidal effects produced by Moon and Sun. An analytical solution being derived using Hori's perturbation technique at a second order Hamiltonian. Numerical nutation series will be deduced from the theory.