• Title/Summary/Keyword: geophysics

Search Result 1,292, Processing Time 0.022 seconds

Interpretation and Analysis of Seismic Crosshole Data: Case History (탄성파 토모그래피 단면측정 데이터 분석 및 해석: 현장응용 사례)

  • Kim Jung-Yul;Kim Yoo-Sung;Hyun Hye-Ja
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.31-42
    • /
    • 1998
  • Recently crosshole seismic tomography has come to be widely used especially for the civil engineering, because it can provide more detail information than any other surface method, although the resolution of tomogram will be inevitably deteriorated to some extent due to the limited wavefield aperture on the nonuniqueness of traveltime inversion. In addition, our field sites often consist of a high-velocity bed rock overlain by low-velocity rock, sometimes with a contrast of more than 45 percent, and furthermore the bed rock is folded. The first arriving waves can be then the refracted ones that travel along the bed rock surface for some source/receiver distances. Thus, the desirable first arrivals can be easily misread that cause severe distortion of the resulting tomogram, if it is concerned with (straight ray) traveltime inversion procedure. In this case, comparision with synthetic data (forward modeling) is a valuable tool in the interpretation process. Besides, abundant information is contained in the crosshole data. For instance, examination of tube waves can be devoted to detecting discontinuities within the borehole such as breakouts, faults, fractures or shear zones as well as the end of the borehole. Specific frequency characteristics of marine silty mud will help discriminate from other soft rocks. The aim of this paper is to present several strategies to analyze and interpret the crosshole data in order to improve the ability at first to determine the spatial dimensions of interwell anomalies and furthermore to understand the underground structures. To this end, our field data are demonstrated. Possibility of misreading the first arrivals was illustrated. Tube waves were investigated in conjunction with the televiewer images. Use of shot- and receiver gathers was examined to benefit the detectabilities of discontinuities within the borehole.

  • PDF

Acoustic 2-D Full-waveform Inversion with Initial Guess Estimated by Traveltime Tomography (주시 토모그래피와 음향 2차원 전파형 역산의 적용성에 관한 연구)

  • Han Hyun Chul;Cho Chang Soo;Suh Jung Hee;Lee Doo Sung
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.49-56
    • /
    • 1998
  • Seismic tomography has been widely used as high resolution subsurface imaging techniques in engineering applications. Although most of the techniques have been using travel time inversion, waveform method is being driven forward owing to the progress of computational environments. Although full-waveform inversion method has been known as the best method in terms of model resolving power without high-frequency restriction and weak scattering approximation, it has practical disadvantage that it is apt to get stuck in local minimum if the initial guess is far from the actual model and it consumes so much time to calculate. In this study, 2-D full-waveform inversion algorithm in acoustic medium is developed, which uses result of traveltime tomography as initial model. From the application on synthetic data, it is proved that this approach can efficiently reduce the problem of conventional approaches: our algorithm shows much faster convergence rate and improvement of model resolution. Result of application on physical modeling data also shows much improvement. It is expected that this algorithm can be applicable to real data.

  • PDF

Investigation of Contaminated Waste Disposal Site Using Electrical Resistivity Imaging Technique (폐기물 처분장 오염지반조사를 위한 전기비저항 영상화 기법의 적용)

  • Jung Yunmoon;Woo Ik;Kim Jungho;Cho Seongjun
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.57-63
    • /
    • 1998
  • The electrical resistivity method, one of old and widely used geophysical prospecting methods, has extended its scope to civil & environmental engineering areas. The electrical resistivity imaging technique was performed at the waste disposal site located in Junju to verify the applicability to the environmental engineering area. The dipole-dipole array, with the dipole spacing of 10 m, was applied along eight survey lines. The field data were obtained under the control of automatic acquisition softwares and topographic effects were corrected during processing stage. The processed resistivity images show that very low resistivity develops inside the disposal site and the distribution of low resistivity is exactly in accord with the boundary of the site except the river side. The depth of low resistivity zones is deeper toward the river side, which is interpreted that there is a high possibility for contaminants to be scattered to the river. From resistivity images, it was feasible to deduce the depth of waste disposal as well as the horizontal/vertical distribution of the contaminated zone, which proved the applicability of the electrical resistivity imaging technique to the environmental engineering area.

  • PDF

Applying Spitz Trace Interpolation Algorithm for Seismic Data (탄성파 자료를 이용한 Spitz 보간 알고리즘의 적용)

  • Yang Jung Ah;Suh Jung-Hee
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.171-179
    • /
    • 2003
  • In land and marine seismic survey, we generally set receivers with equal interval suppose that sampling interval Is too narrow. But the cost of seismic data acquisition and that of data processing are much higher, therefore we should design proper receiver interval. Spatial aliasing can be occurred on seismic data when sampling interval is too coarse. If we Process spatial aliasing data, we can not obtain a good imaging result. Trace interpolation is used to improve the quality of multichannel seismic data processing. In this study, we applied the Spitz algorithm which is widely used in seismic data processing. This algorithm works well regardless of dip information of the complex underground structure. Using prediction filter and original traces with linear event we interpolated in f-x domain. We confirm our algorithm by examining for some synthetic data and marine data. After interpolation, we could find that receiver intervals get more narrow and the number of receiver is increased. We also could see that continuity of traces is more linear than before Applying this interpolation algorithm on seismic data with spatial aliasing, we may obtain a better migration imaging.

Characteristics of Static Shift in 3-D MT Inversion (3차원 MT 역산에서 정적효과의 특성 고찰)

  • Lee Tae Jong;Uchida Toshihiro;Sasaki Yutaka;Song Yoonho
    • Geophysics and Geophysical Exploration
    • /
    • v.6 no.4
    • /
    • pp.199-206
    • /
    • 2003
  • Characteristics of the static shift are discussed by comparing the three-dimensional MT inversion with/without static shift parameterization. The galvanic distortion by small-scale shallow feature often leads severe distortion in inverted resistivity structures. The new inversion algorithm is applied to four numerical data sets contaminated by different amount of static shift. In real field data interpretations, we generally do not have any a-priori information about how much the data contains the static shift. In this study, we developed an algorithm for finding both Lagrangian multiplier for smoothness and the trade-off parameter for static shift, simultaneously in 3-D MT inversion. Applications of this inversion routine for the numerical data sets showed quite reasonable estimation of static shift parameters without any a-priori information. The inversion scheme is successfully applied to all the four data sets, even when the static shift does not obey the Gaussian distribution. Allowing the static shift parameters have non-zero degree of freedom to the inversion, we could get more accurate block resistivities as well as static shifts in the data. When inversion does not consider the static shift as inversion parameters (conventional MT inversion), the block resistivities on the surface are modified considerably to match possible static shift. The inhomogeneous blocks on the surface can generate the static shift at low frequencies. By those mechanisms, the conventional 3-D MT inversion can reconstruct the resistivity structures to some extent in the deeper parts even when moderate static shifts are in the data. As frequency increased, however, the galvanic distortion is not frequency independent any more, and thus the conventional inversion failed to fit the apparent resistivity and phase, especially when strong static shift is added. Even in such case, however, reasonable estimation of block resistivity as well as static shift parameters were obtained by 3-D MT inversion with static shift parameterization.

Kinematic Approximation of Partial Derivative Seismogram with respect to Velocity and Density (편미분 파동장을 이용한 탄성파 주시 곡선의 평가)

  • Shin, Chang-Soo;Shin, Sung-Ryul
    • Geophysics and Geophysical Exploration
    • /
    • v.1 no.1
    • /
    • pp.8-18
    • /
    • 1998
  • In exploration seismology, the Kirchhoff hyperbola has been successfully used to migrate reflection seismo-grams. The mathematical basis of Kirchhoff hyperbola has not been clearly defined and understood for the application of prestack or poststack migration. The travel time from the scatterer in the subsurface to the receivers (exploding reflector model) on the surface can be a kinematic approximation of Green's function when the source is excited at position of the scatterer. If we add the travel time from the source to the scatterer in the subsurface to the travel time of exploding reflector model, we can view this travel time as a kinematic approximation of the partial derivative wavefield with respect to the velocity or the density in the subsurface. The summation of reflection seismogram along the Kirchhoff hyperbola can be evaluated as an inner product between the partial derivative wavefield and the field reflection seismogram. In addition to this kinematic interpretation of Kirchhoff hyperbola, when we extend this concept to shallow refraction seismic data, the stacking of refraction data along the straight line can be interpreted as a measurement of an inner product between the first arrival waveform of the partial derivative wavefield and the field refraction data. We evaluated the Kirchhoff hyperbola and the straight line for stacking the refraction data in terms of the first arrival waveform of the partial derivative wavefield with respect to the velocity or the density in the subsurface. This evaluation provides a firm and solid basis for the conventional Kirchhoff migration and the straight line stacking of the refraction data.

  • PDF

Installation of Very Broadband Seismic Stations to Observe Seismic and Cryogenic Signals, Antarctica (남극 지진 및 빙권 신호 관측을 위한 초광대역 지진계 설치)

  • Lee, Won-Sang;Park, Yong-Cheol;Yun, Suk-Young;Seo, Ki-Weon;Yee, Tae-Gyu;Choe, Han-Jin;Yoon, Ho-Il;Chae, Nam-Yi
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.144-149
    • /
    • 2012
  • Korea Polar Research Institute (KOPRI) has successfully installed two autonomous very broadband three-component seismic stations at the King George Island (KGI), Antarctica, during the 24th KOPRI Antarctic Summer Expedition (2010 ~ 2011). The seismic observation system is originally designed by the Incorporated Research Institutions for Seismology Program for Array Seismic Studies of the Continental Lithosphere Instrument Center, which is fully compatible with the Polar Earth Observing Network seismic system. The installation is to achieve the following major goals: 1. Monitoring local earthquakes and icequakes in and around the KGI, 2. Validating the robustness of seismic system operation under harsh environment. For further intensive studies, we plan to move and install them adding a couple more stations at ice shelf system, e.g., Larsen Ice Shelf System, Antarctica, in 2013 to figure out ice dynamics and physical interaction between lithosphere and cryosphere. In this article, we evaluate seismic station performance and characteristics by examining ambient noise, and provide operational system information such as frequency response and State-Of-Health information.

A Case Study on The Data Processing and Interpretation of Aeromagnetic Survey Conducted in The Low Latitude Area: Stung Treng, Cambodia (저위도 캄보디아 스퉁트렝 지역의 항공자력탐사 자료처리 및 해석)

  • Shin, Eun-Ju;Ko, Kwang-Beom;You, Young-June;Jung, Yeon-Ho
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.136-143
    • /
    • 2012
  • In this case study, we present the various and consistent processing techniques for the reasonable interpretation of aeromagnetic data. In the processing stage, we especially focused on the three major respects. First, in the low latitude area, severe artifacts are occurred as a result of reduction to the pole technique. To overcome this problem, variable alternative methods were investigated. From the comparison of each technique, we concluded that energy balancing method gives more fruitful result. Second, because of limited a priori information, it is nearly impossible to employ detailed geological survey due to wide and thick spreading of soils in the survey area. So we especially investigated the new techniques such as extracting slope, curvature and aspect information mainly used in GIS field as well as conventional methods. Finally, by using the Euler deconvolution, we extracted the depth information on the magnetic anomalous body. From the synthetic analysis between depth information and previous discussed results, the detailed future survey area was proposed. We think that a series of processing techniques discussed in this study may perform an important role in the domestic and abroad resource development project as a useful guideline.

A Study on Optimization of the Global-Correlation-Based Objective Function for the Simultaneous-Source Full Waveform Inversion with Streamer-Type Data (스트리머 방식 탐사 자료의 동시 송신원 전파형 역산을 위한 Global correlation 기반 목적함수 최적화 연구)

  • Son, Woo-Hyun;Pyun, Suk-Joon;Jang, Dong-Hyuk;Park, Yun-Hui
    • Geophysics and Geophysical Exploration
    • /
    • v.15 no.3
    • /
    • pp.129-135
    • /
    • 2012
  • The simultaneous-source full waveform inversion improves the applicability of full waveform inversion by reducing the computational cost. Since this technique adopts simultaneous multi-source for forward modeling, unwanted events remain in the residual seismograms when the receiver geometry of field acquisition is different from that of numerical modeling. As a result, these events impede the convergence of the full waveform inversion. In particular, the streamer-type data with limited offsets is the most difficult data to apply the simultaneous-source technique. To overcome this problem, the global-correlation-based objective function was suggested and it was successfully applied to the simultaneous-source full waveform inversion in time domain. However, this method distorts residual wavefields due to the modified objective function and has a negative influence on the inversion result. In addition, this method has not been applied to the frequency-domain simultaneous-source full waveform inversion. In this paper, we apply a timedamping function to the observed and modeled data, which are used to compute global correlation, to minimize the distortion of residual wavefields. Since the damped wavefields optimize the performance of the global correlation, it mitigates the distortion of the residual wavefields and improves the inversion result. Our algorithm incorporates the globalcorrelation-based full waveform inversion into the frequency domain by back-propagating the time-domain residual wavefields in the frequency domain. Through the numerical examples using the streamer-type data, we show that our inversion algorithm better describes the velocity structure than the conventional global correlation approach does.

Source Parameters for the 9 December 2000 $M_L$ 3.7 Offshore Yeongdeok Earthquake, South Korea (2000년 12월 9일 $M_L$ 3.7 영덕 해역 지진의 지진원 상수)

  • Choi, Ho-Seon
    • Geophysics and Geophysical Exploration
    • /
    • v.13 no.2
    • /
    • pp.137-143
    • /
    • 2010
  • An earthquake with local magnitude $(M_L)$ 3.7 on December 9, 2000 occurred offshore Yeongdeok area, South Korea. In case of applying Chang and Baag (2006) crustal velocity model, the epicenter is $36.4462^{\circ}N\;and\;129.9789^{\circ}E$, which belongs to the inside of the Korean Peninsula Continental Shelf. Although we use the modified model reducing crustal thickness of Chang and Baag (2006) model by 5 km considering the transition from continental crust to oceanic crust in the East Sea, the epicenter was little changed. We carried out the waveform inversion analysis to estimate focal depth and focal mechanism of this event. The focal depth is estimated to be 11 ~ 12 km. The seismic moment is estimated to be $1.0{\times}10^{15}N{\cdot}m$, and this value corresponds to the moment magnitude $(M_W)$ 3.9. The offshore Yeongdeok event including May 29, 2004 offshore Uljin one show typical thrust faulting, and the direction of P-axis is ESE-WNW. The moment magnitude estimated by the spectral analysis is 4.0, which is similar to that by the waveform inversion analysis. Average stress drop is estimated to be 3.4 MPa.