• 제목/요약/키워드: geometrically nonlinear analysis

검색결과 201건 처리시간 0.025초

Aerodynamic stability analysis of geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction

  • Xu, Yun-ping;Zheng, Zhou-lian;Liu, Chang-jiang;Wu, Kui;Song, Wei-ju
    • Wind and Structures
    • /
    • 제26권6호
    • /
    • pp.355-367
    • /
    • 2018
  • This paper studies the aerodynamic stability of a tensioned, geometrically nonlinear orthotropic membrane structure with hyperbolic paraboloid in sag direction. Considering flow separation, the wind field around membrane structure is simulated as the superposition of a uniform flow and a continuous vortex layer. By the potential flow theory in fluid mechanics and the thin airfoil theory in aerodynamics, aerodynamic pressure acting on membrane surface can be determined. And based on the large amplitude theory of membrane and D'Alembert's principle, interaction governing equations of wind-structure are established. Then, under the circumstance of single-mode response, the Bubnov-Galerkin approximate method is applied to transform the complicated interaction governing equations into a system of second-order nonlinear differential equation with constant coefficients. Through judging the frequency characteristic of the system characteristic equation, the critical velocity of divergence instability is determined. Different parameter analysis shows that the orthotropy, geometrical nonlinearity and scantling of structure is significant for preventing destructive aerodynamic instability in membrane structures. Compared to the model without considering flow separation, it's basically consistent about the divergence instability regularities in the flow separation model.

Nonlinear modelling and analysis of thin piezoelectric plates: Buckling and post-buckling behaviour

  • Krommer, Michael;Vetyukova, Yury;Staudigl, Elisabeth
    • Smart Structures and Systems
    • /
    • 제18권1호
    • /
    • pp.155-181
    • /
    • 2016
  • In the present paper we discuss the stability and the post-buckling behaviour of thin piezoelastic plates. The first part of the paper is concerned with the modelling of such plates. We discuss the constitutive modelling, starting with the three-dimensional constitutive relations within Voigt's linearized theory of piezoelasticity. Assuming a plane state of stress and a linear distribution of the strains with respect to the thickness of the thin plate, two-dimensional constitutive relations are obtained. The specific form of the linear thickness distribution of the strain is first derived within a fully geometrically nonlinear formulation, for which a Finite Element implementation is introduced. Then, a simplified theory based on the von Karman and Tsien kinematic assumption and the Berger approximation is introduced for simply supported plates with polygonal planform. The governing equations of this theory are solved using a Galerkin procedure and cast into a non-dimensional formulation. In the second part of the paper we discuss the stability and the post-buckling behaviour for single term and multi term solutions of the non-dimensional equations. Finally, numerical results are presented using the Finite Element implementation for the fully geometrically nonlinear theory. The results from the simplified von Karman and Tsien theory are then verified by a comparison with the numerical solutions.

복합재 적층판재의 비선형 수치해석 및 실험 (Nonlinear Numerical Analysis and Experiment of Composite Laminated Plates)

  • 조원만;이영신;윤성기
    • 대한기계학회논문집
    • /
    • 제17권12호
    • /
    • pp.2915-2925
    • /
    • 1993
  • A finite element program using degenerated shell element was developed to solve the geometric, material and combined nonlinear behaviors of composite laminated plates. The total Lagrangian method was implemented for geometric nonlinear analysis. The material nonlinear behavior was analyzed by considering the matrix degradation due to the progressive failure in the matrix and matrix-fiber interface after initial failure. The results of the geometric nonlinear analyses showed good agreements with the other exact and numerical solutions. The results of the combined nonlinear analyses considered both geometric and material nonlinear behaviors were compared to the experiments in which a concentrated force was applied to the center of the square laminated plate with clamped four edges.

Static and dynamic responses of Halgavor Footbridge using steel and FRP materials

  • Gunaydin, M.;Adanur, S.;Altunisik, A.C.;Sevim, B.
    • Steel and Composite Structures
    • /
    • 제18권1호
    • /
    • pp.51-69
    • /
    • 2015
  • In recent years, the use of fiber reinforced polymer composites has increased because of their unique features. They have been used widely in the aircraft and space industries, medical and sporting goods and automotive industries. Thanks to their beneficial and various advantages over traditional materials such as high strength, high rigidity, low weight, corrosion resistance, low maintenance cost, aesthetic appearance and easy demountable or moveable construction. In this paper, it is aimed to determine and compare the geometrically nonlinear static and dynamic analysis results of footbridges using steel and glass fiber reinforced polymer composite (GFRP) materials. For this purpose, Halgavor suspension footbridge is selected as numerical examples. The analyses are performed using three identical footbridges, first constructed from steel, second built only with GFRP material and third made of steel- GFRP material, under static and dynamic loadings using finite element method. In the finite element modeling and analyses, SAP2000 program is used. Geometric nonlinearities are taken into consideration in the analysis using P-Delta criterion. The numerical results have indicated that the responses of the three bridges are different and that the response values obtained for the GFRP composite bridge are quite less compared to the steel bridge. It is understood that GFRP material is more useful than the steel for the footbridges.

얇은 막재료의 주름해석 기법 (Analysis Methods of Wrinkle Prediction for Thin Membrane)

  • 배홍수;우경식
    • 한국항공우주학회지
    • /
    • 제41권11호
    • /
    • pp.865-873
    • /
    • 2013
  • 본 논문에서는 유한요소해석에 의한 막재료의 주름 해석 기법에 관하여 연구하였다. 삼각형 세일 형상에 대해 멤브레인 요소와 쉘 요소를 사용하여 주름해석을 수행하였다. 멤브레인 요소를 이용한 기법에서는 주름을 벌칙매개변수에 의한 물성치를 수정하는 알고리즘을 상용프로그램 내 사용자 서브루틴을 통하여 구현하였다. 쉘 요소에 의한 기하학적 비선형 후좌굴 기법에서는 면외방향의 좌굴을 발생시키기 위하여 모델의 메쉬에 작은 크기의 기하학적 결함을 심는 방법을 사용하였다. 쉘 방법에서는 내연 및 외연해석 기법을 고려하였다. 요소수의 증가에 따른 수렴성과 결과의 정확도의 관점에서 멤브레인 요소법과 쉘 요소법의 효율성을 비교하였다.

퇴화 쉘 요소를 사용한 적층복합재의 증분형 비선형 좌굴 현상 및 적층 레이업 효과 (The Effects of Composite Laminate Layups on Nonlinear Buckling Behavior Using a Degenerated Shell Element)

  • 조희근
    • 한국기계가공학회지
    • /
    • 제15권1호
    • /
    • pp.50-60
    • /
    • 2016
  • Laminate composites have a number of excellent characteristics in aspects of strength, stiffness, bending, and buckling. Buckling and postbuckling analysis of laminate composites with layups of [90/0]2s, $[{\pm}45/90/0]s$, $[{\pm}45]2s$ has been carried using the Total Lagrangian nonlinear Newton-Raphson method. The formulation of a geometrically nonlinear composite shell element based on a nonlinear large deformation method is presented. The used element is an eight-node degenerated shell element with six degrees of freedom. Square, circular cylinder, and arch panel laminate geometries were analyzed to verify the effects of the layups on the buckling and postbuckling behavior. The results showed that the effects of laminate layups on bucking and postbuckling behavior and the present formulation showed very good agreement with existing references.

Thermal post-buckling analysis of functionally graded beams with temperature-dependent physical properties

  • Kocaturk, Turgut;Akbas, Seref Doguscan
    • Steel and Composite Structures
    • /
    • 제15권5호
    • /
    • pp.481-505
    • /
    • 2013
  • This paper focuses on thermal post-buckling analysis of functionally graded beams with temperature dependent physical properties by using the total Lagrangian Timoshenko beam element approximation. Material properties of the beam change in the thickness direction according to a power-law function. The beam is clamped at both ends. In the case of beams with immovable ends, temperature rise causes compressible forces and therefore buckling and post-buckling phenomena occurs. It is known that post-buckling problems are geometrically nonlinear problems. Also, the material properties (Young's modulus, coefficient of thermal expansion, yield stress) are temperature dependent: That is the coefficients of the governing equations are not constant in this study. This situation suggests the physical nonlinearity of the problem. Hence, the considered problem is both geometrically and physically nonlinear. The considered highly non-linear problem is solved considering full geometric non-linearity by using incremental displacement-based finite element method in conjunction with Newton-Raphson iteration method. In this study, the differences between temperature dependent and independent physical properties are investigated for functionally graded beams in detail in post-buckling case. With the effects of material gradient property and thermal load, the relationships between deflections, critical buckling temperature and maximum stresses of the beams are illustrated in detail in post-buckling case.

Iterative Analysis for Nonlinear Laminated Rectangular Plates by Finite Difference Method

  • Kim, Chi Kyung
    • International Journal of Safety
    • /
    • 제1권1호
    • /
    • pp.13-17
    • /
    • 2002
  • A new system of equations governing the nonlinear thin laminated plates with large deflections using von Karman equations is derived. The effects of transverse shear in the thin interlayer are included as part of the analysis. The finite difference method is used to perform the geometrically nonlinear behavior of the plate. The resultant equations permit the analysis of the effect of transverse shear stress deformation on the overall behavior of the interlayer using the load incremental method. For the purpose of feasibility and validity of this present method, the numerical results are compared with other available solutions for accuracy as well as efficiency. The solution techniques have been implemented and the numerical results of example problem are discussed and evaluated.

경계부 강성 치환 기법을 이용한 대공간 구조물의 부분 비선형 시뮬레이션에 관한 연구 (A Study on Nonlinear Partial Simulation of Spatial Structure Using Rigid Replacement Method of Boundary)

  • 김승덕;정혜원
    • 한국공간구조학회논문집
    • /
    • 제19권2호
    • /
    • pp.17-25
    • /
    • 2019
  • In this study, we propose a new scheme of nonlinear analysis for Incheon International Airport Terminal-2 which was opened on January of 2018 for the Olympic Winter Games of PyeongChang in South Korea. The terminal was built by a single layered irregular space frame. It has hard problems for nonlinear analysis geometrically, because of a limitation of personal computer's ability by the number of rigid joints in the roof. Therefore we attempt easier approach to be chosen a center part of the roof instead of the whole structure, and to substitute the other boundary parts as springs. The scheme shows some merits for saving memory and calculation time and so on.

Nonlinear static analysis of composite cylinders with metamaterial core layer, adjustable Poisson's ratio, and non-uniform thickness

  • Eipakchi, Hamidreza;Nasrekani, Farid Mahboubi
    • Steel and Composite Structures
    • /
    • 제43권2호
    • /
    • pp.241-256
    • /
    • 2022
  • In this article, an analytical procedure is presented for static analysis of composite cylinders with the geometrically nonlinear behavior, and non-uniform thickness profiles under different loading conditions by considering moderately large deformation. The composite cylinder includes two inner and outer isotropic layers and one honeycomb core layer with adjustable Poisson's ratio. The Mirsky-Herman theory in conjunction with the von-Karman nonlinear theory is employed to extract the governing equations which are a system of nonlinear differential equations with variable coefficients. The governing equations are solved analytically using the matched asymptotic expansion (MAE) method of the perturbation technique and the effects of moderately large deformations are studied. The presented method obtains the results with fast convergence and high accuracy even in the regions near the boundaries. Highlights: • An analytical procedure based on the matched asymptotic expansion method is proposed for the static nonlinear analysis of composite cylindrical shells with a honeycomb core layer and non-uniform thickness. • The effect of moderately large deformation has been considered in the kinematic relations by assuming the nonlinear von Karman theory. • By conducting a parametric study, the effect of the honeycomb structure on the results is studied. • By adjusting the Poisson ratio, the effect of auxetic behavior on the nonlinear results is investigated.