• Title/Summary/Keyword: geometrical parameters

Search Result 743, Processing Time 0.027 seconds

Optimization and investigations of low-velocity bending impact of thin-walled beams

  • Hossein Taghipoor;Mahdi Sefidi
    • Steel and Composite Structures
    • /
    • v.50 no.2
    • /
    • pp.159-181
    • /
    • 2024
  • In the present study, the effect of geometrical parameters of two different types of aluminum thin-walled structures on energy absorption under three-bending impact loading has been investigated experimentally and numerically. To evaluate the effect of parameters on the specific energy absorption (SEA), initial peak crushing force (IPCF), and the maximum crushing distance (δ), a design of experiment technique (DOE) with response surface method (RSM) was applied. Four different thin-walled structures have been tested under the low-velocity impact, and then they have simulated by ABAQUS software. An acceptable consistency between the numerical and experimental results was obtained. In this study, statistical analysis has been performed on various parameters of three different types of tubes. In the first and the second statistical analysis, the dimensional parameters of the cross-section, the number of holes, and the dimensional parameter of holes were considered as the design variables. The diameter reduction rate and the number of sections with different diameters are related to the third statistical analysis. All design points of the statistical method have been simulated by the finite element package, ABAQUS/Explicit. The final result shows that the height and thickness of tubes were more effective than other geometrical parameters, and despite the fact that the deformations of the cylindrical tubes were around forty percent greater than the rectangular tubes, the top desirability was relevant to the cylindrical tubes with reduced cross-sections.

A Study on Fatigue Characteristics for Design Automation of TS-Type Spot Welded Lap Joint (TS형 박강판 용접 구조물의 자동화설계를 위한 피로특성에 관한 연구)

  • Yeb, Baek-Seung;Ho, Bae-Dong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.2
    • /
    • pp.290-296
    • /
    • 2012
  • Cold-rolled carbon steel sheets are commonly used in railroad car or commercial vehicles such as the automobile. These are mainly fabricated by spot welding which is a kind of electric resistance welding. But fatigue strength of spot welding joint is lower than that of base metal due to high stress concentration at nugget edge of the spot welded part. And fatigue strength of them is especially influenced by not only geometrical and mechanical factors but also welding conditions of the spot welded joint. So for fatigue design of gas welded joints such as TS-type joints, it is necessary to obtain design information on stress distribution at the weldment as well as fatigue strength of spot welded joints. And also, the influence of the geometrical parameters of spot welded joints on stress distribution and fatigue strength must be evaluated. And analysis approach for fatigue test using design of experiment are evaluated optimum factor in TS-type welded joint and geometrical parameters of materials. Using these results, that factors applied to fundamental information for automation of fatigue design.

A Geometrical Study of Branching Pattern in Pinus densiflora Siebold & Zuccarini (소나무의 분지형에 관한 기하학적 연구)

  • Park, Bong Kyu;Hyeong Seon Choi
    • Journal of environmental and Sanitary engineering
    • /
    • v.5 no.2
    • /
    • pp.100-104
    • /
    • 1990
  • The geometrical branching pattern was studied through the time by a few parameters: the branching lengths, angles and number of branches. Ratios of moving amounts of nutrients between branches was decreased more in a terminal branch than in a proximal one. As the time increased, the more branches and leaves were also increased, while the influx of sunlight was decreased in the lower portion of inner crown which increased the mortality rate of branches.

  • PDF

Supporting plane for intelligent robot system (지능 로보트 시스템에 있어서 지면의 이용에 관한 연구)

  • 박경택
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1991.10a
    • /
    • pp.990-995
    • /
    • 1991
  • The integration of intelligent robots into manufacturing systems should positively impact the product quality and productivity. A new theory of object location and recognition using the supporting plane is presented. The unknown supporting points are determined by image coordinates, known camera parameters, and joint coordinates of the robot manipulators. This is developed by using the geometrical interpretation of perspective projection and the geometrical constraints of industrial environments. This can be applied to solve typical robot vision problems such as determination of position, orientation, and recognition of objects.

  • PDF

GEOMETRICAL IMPLICATION OF THE CME EARTHWARD DIRECTION PARAMETER AND ITS COMPARISON WITH CONE MODEL PARAMETERS

  • Moon, Y.J.;Kim, R.S.;Cho, K.S.
    • Journal of The Korean Astronomical Society
    • /
    • v.42 no.2
    • /
    • pp.27-32
    • /
    • 2009
  • Recently, we suggested a CME earthward direction parameter as an important geoeffective parameter that has been demonstrated by front-side halo CME data. In this study, we present the geometrical implication of this parameter by comparing with the parameters from a CME cone model. Major results from this study can be summarized as follows. First, we derive an analytic relationship between the cone model parameters(the half angular width of a cone and the angle between the cone axis and the plane of sky) and the earthward direction parameter. Second, we demonstrate a close relationship between the earthward direction parameter and the cone axis angle using 32 front-side full halo CMEs. Third, we found that there is noticeable inconsistency between the cone axis angles estimated from the cone model fitting to the CMEs and from their associated flare positions, implying that the flare position should not be considered as a good earthward direction parameter. Finally we present several advantages of our earthward direction parameter in terms of the forecast of a geomagnetic storm based on CME parameters.

Development of Full ice-cream cone model for HCME 3-D parameters

  • Na, Hyeonock;Moon, Yong-Jae;Lee, Harim
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.41 no.1
    • /
    • pp.47.1-47.1
    • /
    • 2016
  • The determination of three dimensional parameters (e.g., radial speed, angular width, source location) of Coronal Mass Ejections (CMEs) is very important for space weather forecast. To estimate these parameters, several cone models based on a flat cone or a shallow ice-cream cone with spherical front have been suggested. In this study, we investigate which cone model is proper for halo CME morphology using 26 CMEs which are identified as halo CMEs by one spacecraft (SOHO or STEREO-A or B) and as limb CMEs by the other ones. From geometrical parameters of these CMEs such as their front curvature, we find that near full ice-cream cone CMEs are dominant over shallow ice-cream cone CMEs. Thus we develop a new full ice-cream cone model by assuming that a full ice-cream cone consists of many flat cones with different heights and angular widths. This model is carried out by the following steps: (1) construct a cone for given height and angular width, (2) project the cone onto the sky plane, (3) select points comprising the outer boundary, (4) minimize the difference between the estimated projection speeds with the observed ones. We apply this model to 12 SOHO halo CMEs and compare the results with those from other stereoscopic methods (a geometrical triangulation method and a Graduated Cylindrical Shell model) based on multi-spacecraft data.

  • PDF

Relationship Between Flat End-mill Shape and Geometrical Characteristics in Side Walls Generated by End-milling Process (엔드밀링 공정에 의하여 생성된 측벽의 기하학적 특성과 평엔드밀 형상 사이의 관계)

  • Kim, Kang
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.39 no.1
    • /
    • pp.95-103
    • /
    • 2015
  • This paper presents the effects of the tool shape on the geometrical characteristics of flat end-milled side walls. A tool shape is characterized by such parameters as helix angle, number of cutting edges, and diameter. The geometrical characteristics of the side walls are represented by the surface profiles in the feed and axial directions, which are orthogonal to each other. The geometrical defects in each direction are estimated based on the instantaneous apparent cutting areas, which are represented by the interference area between the tool and workpiece and that between the cutting edge and workpiece. It is confirmed that a geometrical defect in the feed direction is formed when the tool leaves the workpiece and the curvature of the tool path changes. Defects in the axial direction are also found in the side walls, except for the defect zone in the feed direction. An up-cut using an end-mill with a steeper helix angle, a greater number of cutting edges, and a smaller diameter are thus found to improve the geometrical accuracy of end-milled side walls.

An Analysis of the Construction Process for Deployable Structures (전개가능 구조물의 시공 과정 해석)

  • 이지연;김종범;한상을
    • Proceedings of the Computational Structural Engineering Institute Conference
    • /
    • 2004.04a
    • /
    • pp.225-233
    • /
    • 2004
  • Deployable structures are space frames consisting of straight bars that are linked together into bundle and can be deployed large, load bearing structures. Deployable structures are easy to set up, to assemble, to disassemble, to transport and to keep for the use. Also, reusability and flexibility are another important advantages for environmental matter. Since deployable structures have various advantages, they offer viable alternatives for a wide range of potential applications in the temporary construction industry as well as in the aerospace industry, The purpose of this thesis is to decide on geometrical parameters of the design through the numerical analysis and create a final configuration of deployable structures using the geometrical parameters. The Multibody Dynamic Analysis that is dealt with mechanics and aeronautics is used for the method of analysis.

  • PDF

Geometrical Analysis of a Torque Converter (토크 컨버터의 형상 분석)

  • 임원석
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.5 no.5
    • /
    • pp.197-212
    • /
    • 1997
  • The performance of a torque converter can be expressed by the performance parameters such as flow radius and flow angle, on the mean flow path. The geometric analysis of the torque converter is required to determine these parameters for the modeling of the torque converter. In general, the blade shape is depicted by three dimensional data at the mid-surface of blade or those of the pressure and suction side. To generate three dimensional model of the blade using the data mentioned above, a consistent data format and a shape generation algorithm are required. This paper presents a useful consistent data format of the blades and an algorithm for the geometrical shape generation. By the geometric analysis program to which the shape generation algorithm is embedded, the variation of blade angles in rotating element analyzed. Then finally, the analyzed results of geometric profile of a blade are compared with those of the blade design principle, so called forced vortex theorem.

  • PDF

Theoretical Investigation of the Triphosphate Forms of Azidothymidine and Thymidine

  • Arissawa, Marcia;Felcman, Judith;Herrera, Juan Omar Machucca
    • BMB Reports
    • /
    • v.36 no.3
    • /
    • pp.243-250
    • /
    • 2003
  • In this paper we investigate (using AM1 semi-empirical as well as HF methods at the STO-3G, 3-21G, 6-31G, 6-$31G^*$ and 6-31+$G^{**}$ level) the conformations, geometrical parameters, Mulliken charges, and solvation effects of the triphosphate form of AZT (AZTTP), as well as the thymidine nucleotide (dTTP) structure. Our calculated geometrical parameters and Mulliken charges, with and without solvation effects, are correlated with recent experimental results.