• 제목/요약/키워드: geometrical computation

Search Result 54, Processing Time 0.021 seconds

Neuro-fuzzy and artificial neural networks modeling of uniform temperature effects of symmetric parabolic haunched beams

  • Yuksel, S. Bahadir;Yarar, Alpaslan
    • Structural Engineering and Mechanics
    • /
    • v.56 no.5
    • /
    • pp.787-796
    • /
    • 2015
  • When the temperature of a structure varies, there is a tendency to produce changes in the shape of the structure. The resulting actions may be of considerable importance in the analysis of the structures having non-prismatic members. The computation of design forces for the non-prismatic beams having symmetrical parabolic haunches (NBSPH) is fairly difficult because of the parabolic change of the cross section. Due to their non-prismatic geometrical configuration, their assessment, particularly the computation of fixed-end horizontal forces and fixed-end moments becomes a complex problem. In this study, the efficiency of the Artificial Neural Networks (ANN) and Adaptive Neuro Fuzzy Inference Systems (ANFIS) in predicting the design forces and the design moments of the NBSPH due to temperature changes was investigated. Previously obtained finite element analyses results in the literature were used to train and test the ANN and ANFIS models. The performances of the different models were evaluated by comparing the corresponding values of mean squared errors (MSE) and decisive coefficients ($R^2$). In addition to this, the comparison of ANN and ANFIS with traditional methods was made by setting up Linear-regression (LR) model.

New parametric approach to decomposition of disk averaged spectra of potential extra terrestrial planet I. Surface type ratio of the Earth

  • Ryu, Dong-Ok;Seong, Se-Hyun;Yu, Jin-Hee;Oh, Eun-Song;Ahn, Ki-Beom;Hong, Jin-Suk;Lee, Jae-Min;Kim, Suk-Whan
    • Bulletin of the Korean Space Science Society
    • /
    • 2010.04a
    • /
    • pp.34.2-34.2
    • /
    • 2010
  • We built 7 potential extra-terrestrial planets including the full 3D Earth model with various surface types and 6 planet models, each with uniform surface characteristics. The surface types include ice, tundra, forest, grass, ground and ocean. We then imported these 7 planets into integrated ray tracing(IRT) model to compute their disk averaged spectra and to understand the spectral behavior depending on the geometrical view, illumination phase and seasonal change. The IRT computation show that the 6 planets with uniform surfaces exhibit clear spectral differences from that of the Earth. We then built a phase and seasonal DAS database for the 6 uniform surface planets and used them for parametric spectral decomposition technique to derive the Earth DAS. This computation resulted in the first potential solution to the surface type ratio of the Earth compared to the measured earth surface type ratio. The computational details and the implications are discussed.

  • PDF

SQUERY : A Spatial Query Processor with Spatial Reasoning and Geometric Computation (SQUERY : 공간 추론과 기하학적 연산 기능을 포함한 공간 질의 처리기)

  • Kim, Jongwhan;Kim, Incheol
    • KIISE Transactions on Computing Practices
    • /
    • v.21 no.7
    • /
    • pp.452-457
    • /
    • 2015
  • In this paper, we propose a spatial query processor, SQUERY, which can derive rich query results through spatial reasoning on the initial knowledge base, as well as, process both qualitative and quantitative queries about the topological and directional relationships between spatial objects. In order to derive richer query results, the query processor expands the knowledge base by applying forward spatial reasoning into the initial knowledge base in a preprocessing step. The proposed query processor uses not only qualitative spatial knowledge describing topological/directional relationship between spatial objects, but also utilizes quantitative spatial knowledge including geometric data of individual spatial objects through geometric computation. The results of an experiment with the OSM(Open Street Map) spatial knowledge base demonstrates the high performance of our spatial query processing system.

Convex Sharp Edge Detection of CAD Surfaces without Topology (토폴로지 정보가 없는 CAD 곡면의 꺾인 모서리 탐색)

  • 박정환;이정근
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.2
    • /
    • pp.73-79
    • /
    • 2000
  • The part-surface of mold or stamping-dies consists of a compound surface which consists of lots of composite surfaces, and may have various types of feature shapes including convex sharp edge (CSE). Those CSE features should be considered with care in machining the surface, which necessitates extraction of CSE curves on a compound surface. This work can be done rather easily for a solid model which has a complete topology information. In case of the compound surface without topology information, however, such CSE curves must be gathered through some geometrical calculations paying much computation time. In the paper, extracting CSE curves by the construction of a CSE region-map which can reduce time, and detecting various common edge types are presented.

  • PDF

A Study on the Acoustic-Field Analysis of the Suction Housing using the Reverse Engineering (Reverse Engineering을 이용한 석션 하우징의 음장해석)

  • Yang, Jeong-Jik;Lee, Dong-Ju
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.4
    • /
    • pp.464-471
    • /
    • 2011
  • We tried to analyze sound field of the interior of housing installed with an impeller using the Boundary Element Method (BEM) with the Kirchhoff-Helmholtz integral equation. In order to increase the accuracy of our analysis, reverse engineering technology, which has been developed in recent years. We measured and treated geometrical data with 3D scanning of the practical research object. After modeling by the reverse engineering, we analyzed variation of the BPF as adding vibration frequency and variation of the sound field of the interior of housing by changing the number of impeller blades. We also tried an analysis of free degree variation. Then, we proposed the analysis accuracy and noise reducing method by analysis result.

Position optimization of circular/elliptical cutout within an orthotropic rectangular plate for maximum buckling load

  • Choudhary, Prashant K.;Jana, Prasun
    • Steel and Composite Structures
    • /
    • v.29 no.1
    • /
    • pp.39-51
    • /
    • 2018
  • Position of a circular or elliptical cutout within an orthotropic plate has great influence on its buckling behavior. This paper aims at finding the optimal position (both location and orientation) of a single circular/elliptical cutout, within an orthotropic rectangular plate, that maximizes the critical buckling load. We consider linear buckling of simply supported orthotropic plates under uniaxial edge loads. To obtain the optimal positions of the cutouts, we have employed a MATLAB optimization routine coupled with buckling computation in ANSYS. Our results show that the position of the cutout that maximizes the buckling load has great dependence on the material properties, laminate configurations, and the geometrical parameters of the plate. These optimal results, for a number of plate geometries and cutout sizes, are reported in this paper. These results will be useful in the design of perforated orthotropic plates against buckling failure.

A Brief History of Study on the Bound for Derivative of Rational Curves in CAGD (CAGD에서 유리 곡선의 미분과 그 상한에 관한 연구의 흐름)

  • Park, Yunbeom
    • Journal for History of Mathematics
    • /
    • v.27 no.5
    • /
    • pp.329-345
    • /
    • 2014
  • CAGD(Computer Aided Geometric Design) is a branch of applied mathematics concerned with algorithms for the design of smooth curves and surfaces and for their efficient mathematical representation. The representation is used for the computation of the curves and surfaces, as well as geometrical quantities of importance such as curvatures, intersection curves between two surfaces and offset surfaces. The $B\acute{e}zier$ curves, B-spline, rational $B\acute{e}zier$ curves and NURBS(Non-Uniform Rational B-Spline) are basically and widely used in CAGD. The definitions and properties of these curves are presented in this paper. And a brief history of study on the bound for derivative of rational curves in CAGD is also presented.

Parametric Macro for Two-Dimensional Layout on the Auto-CAD System

  • Kim, Yunyong;Park, Jewoong
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2000.10a
    • /
    • pp.253-260
    • /
    • 2000
  • In recent years, a number of successful nesting approaches have been developed by using the various heuristic algorithms, and due to their application potential several commercial CAD/CAM packages include a nesting module for solving the layout problem. Since a large portion of the complexity of the part nesting problem results from the overlapping computation, the geometric representation is one of the most important factors to reduce the complexity of the problem. The proposed part representation method can easily handle parts and raw materials with widely varying geometrical shape by using the redesigning modules. This considerably reduces the amount of processed data and consequently the run time of the computer. The aim of this research is to develop parametric macro for two-dimensional layout on the Auto-CAD system. Therefore, this research can be called "pre-nesting".

  • PDF

Validation of a CFD model for hydraulic seals

  • Roy, Vincent Le;Guibault, Francois;Vu, Thi C.
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.400-408
    • /
    • 2009
  • Optimization of seal geometries can reduce significantly the energetic losses in a hydraulic seal [1], especially for high head runner turbine. In the optimization process, a reliable prediction of the losses is needed and CFD is often used. This paper presents numerical experiments to determine an adequate CFD model for straight, labyrinth and stepped hydraulic seals used in Francis runners. The computation is performed with a finite volume commercial CFD code with a RANS low Reynolds turbulence model. As numerical computations in small radial clearances of hydraulic seals are not often encountered in the literature, the numerical results are validated with experimental data on straight seals and labyrinth seals. As the validation is satisfactory enough, geometrical optimization of hydraulic seals using CFD will be studied in future works.

Parametric Macro for Two-Dimensional Cutting Stock in Optimal Processing System of FMS

  • Park, Je-Woong;Kim, Yun-Young
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2000.10a
    • /
    • pp.552-552
    • /
    • 2000
  • In recent years, a number of successful nesting approaches have been developed by using the various heuristic algorithms, and due to their application potential several commercial CAD/CAM packages include a nesting module for solving the layout problem. Since a large portion of the complexity of the part nesting problem results from the overlapping computation, the geometric representation is one of the most important factors to reduce the complexity of the problem. The proposed part representation method can easily handle parts and raw materials with widely varying geometrical shape by using the redesigning modules. This considerably reduces the amount of processed data and consequently the run time of the computer. The aim of this research is to develop parametric macro for two-dimensional cutting stock on the Auto-CAD system. Therefore, this research can be called "pre-nesting"

  • PDF