• Title/Summary/Keyword: geometric features

Search Result 504, Processing Time 0.029 seconds

Facial-feature Detection in Color Images using Chrominance Components and Mean-Gray Morphology Operation (색도정보와 Mean-Gray 모폴로지 연산을 이용한 컬러영상에서의 얼굴특징점 검출)

  • 강영도;양창우;김장형
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.3
    • /
    • pp.714-720
    • /
    • 2004
  • In detecting human faces in color images, additional geometric computation is often necessary for validating the face-candidate regions having various forms. In this paper, we propose a method that detects the facial features using chrominance components of color which do not affected by face occlusion and orientation. The proposed algorithm uses the property that the Cb and Cr components have consistent differences around the facial features, especially eye-area. We designed the Mean-Gray Morphology operator to emphasize the feature areas in the eye-map image which generated by basic chrominance differences. Experimental results show that this method can detect the facial features under various face candidate regions effectively.

Line Based Transformation Model (LBTM) for high-resolution satellite imagery rectification

  • Shaker, Ahmed;Shi, Wenzhong
    • Proceedings of the KSRS Conference
    • /
    • 2003.11a
    • /
    • pp.225-227
    • /
    • 2003
  • Traditional photogrammetry and satellite image rectification technique have been developed based on control-points for many decades. These techniques are driven from linked points in image space and the corresponding points in the object space in rigorous colinearity or coplanarity conditions. Recently, digital imagery facilitates the opportunity to use features as well as points for images rectification. These implementations were mainly based on rigorous models that incorporated geometric constraints into the bundle adjustment and could not be applied to the new high-resolution satellite imagery (HRSI) due to the absence of sensor calibration and satellite orbit information. This research is an attempt to establish a new Line Based Transformation Model (LBTM), which is based on linear features only or linear features with a number of ground control points instead of the traditional models that only use Ground Control Points (GCPs) for satellite imagery rectification. The new model does not require any further information about the sensor model or satellite ephemeris data. Synthetic as well as real data have been demonestrated to check the validity and fidelity of the new approach and the results showed that the LBTM can be used efficiently for rectifying HRSI.

  • PDF

Development of Mobile 3D Urban Landscape Authoring and Rendering System

  • Lee Ki-Won;Kim Seung-Yub
    • Korean Journal of Remote Sensing
    • /
    • v.22 no.3
    • /
    • pp.221-228
    • /
    • 2006
  • In this study, an integrated 3D modeling and rendering system dealing with 3D urban landscape features such as terrain, building, road and user-defined geometric ones was designed and implemented using $OPENGL\;{|}\;ES$ (Embedded System) API for mobile devices of PDA. In this system, the authoring functions are composed of several parts handling urban landscape features: vertex-based geometry modeling, editing and manipulating 3D landscape objects, generating geometrically complex type features with attributes for 3D objects, and texture mapping of complex types using image library. It is a kind of feature-based system, linked with 3D geo-based spatial feature attributes. As for the rendering process, some functions are provided: optimizing of integrated multiple 3D landscape objects, and rendering of texture-mapped 3D landscape objects. By the active-synchronized process among desktop system, OPENGL-based 3D visualization system, and mobile system, it is possible to transfer and disseminate 3D feature models through both systems. In this mobile 3D urban processing system, the main graphical user interface and core components is implemented under EVC 4.0 MFC and tested at PDA running on windows mobile and Pocket Pc. It is expected that the mobile 3D geo-spatial information systems supporting registration, modeling, and rendering functions can be effectively utilized for real time 3D urban planning and 3D mobile mapping on the site.

Integration of ERS-2 SAR and IRS-1 D LISS-III Image Data for Improved Coastal Wetland Mapping of southern India

  • Shanmugam, P.;Ahn, Yu-Hwan;Sanjeevi, S.;Manjunath, A.S.
    • Korean Journal of Remote Sensing
    • /
    • v.19 no.5
    • /
    • pp.351-361
    • /
    • 2003
  • As the launches of a series of remote sensing satellites, there are various multiresolution and multi-spectral images available nowadays. This diversity in remotely sensed image data has created a need to be able to integrate data from different sources. The C-band imaging radar of ERS-2 due to its high sensitivity to coastal wetlands holds tremendous potential in mapping and monitoring coastal wetland features. This paper investigates the advantages of using ERS-2 SAR data combined with IRS-ID LISS-3 data for mapping complex coastal wetland features of Tamil Nadu, southern India. We present a methodology in this paper that highlights the mapping potential of different combinations of filtering and integration techniques. The methodology adopted here consists of three major steps as following: (i) speckle noise reduction by comparative performance of different filtering algorithms, (ii) geometric rectification and coregistration, and (iii) application of different integration techniques. The results obtained from the analysis of optical and microwave image data have proved their potential use in improving interpretability of different coastal wetland features of southern India. Based visual and statistical analyzes, this study suggests that brovey transform will perform well in terms of preserving spatial and spectral content of the original image data. It was also realized that speckle filtering is very important before fusing optical and microwave data for mapping coastal mangrove wetland ecosystem.

General Local Transformer Network in Weakly-supervised Point Cloud Analysis (약간 감독되는 포인트 클라우드 분석에서 일반 로컬 트랜스포머 네트워크)

  • Anh-Thuan Tran;Tae Ho Lee;Hoanh-Su Le;Philjoo Choi;Suk-Hwan Lee;Ki-Ryong Kwon
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2023.11a
    • /
    • pp.528-529
    • /
    • 2023
  • Due to vast points and irregular structure, labeling full points in large-scale point clouds is highly tedious and time-consuming. To resolve this issue, we propose a novel point-based transformer network in weakly-supervised semantic segmentation, which only needs 0.1% point annotations. Our network introduces general local features, representing global factors from different neighborhoods based on their order positions. Then, we share query point weights to local features through point attention to reinforce impacts, which are essential in determining sparse point labels. Geometric encoding is introduced to balance query point impact and remind point position during training. As a result, one point in specific local areas can obtain global features from corresponding ones in other neighborhoods and reinforce from its query points. Experimental results on benchmark large-scale point clouds demonstrate our proposed network's state-of-the-art performance.

Verification of Build Part and Tool Paths for Metal 3-D Printing Process (3차원 금속 프린팅 공정에서의 조형파트 진단 및 조형공구경로 검증)

  • Lee, Kyubok;Jee, Haeseong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.41 no.2
    • /
    • pp.103-109
    • /
    • 2017
  • Metal 3D printing, which is an additive metal manufacturing (AMM) process, enables the development of full-density metallic tools and parts using metal powders that are precisely delivered and controlled for deposition with no powder bed. However, some unknown geometric defects and irregular geometric features on an STL model can possibly result in incorrect metal part fabrication after the build. This study first proposes a methodical approach for verifying the build part, including the missing facet problems in an STL model, by defining some irregular features that possibly exist on the part. Second, 2D tool paths on each build layer were investigated for detecting any singular region inside the layer. The method was implemented for building two sample STL models using a direct energy deposition process, and finally, it was visually simulated for diagnosis.

A Study on the Relational Matching Method for Road Pavement Markings in Aerial Images (항공사진에 나타난 도로 노면표식을 위한 관계형 매칭 기법에 관한 연구)

  • Kim, Jin-Gon;Han, Dong-Yup;Yu, Ki-Yun;Kim, Yong-Il
    • 한국지형공간정보학회:학술대회논문집
    • /
    • 2004.10a
    • /
    • pp.25-31
    • /
    • 2004
  • To obtain the 3-D coordinates of the urban roads from aerial images, the accurate matching technique in road areas is required. In this paper, we suggest the relational matching method that is performed by comparison of relationships of road pavement markings after they are extracted from aerial images using geometric properties and spatial relationships of the pavement markings. Relational matching requires not only high level description of features but also the solution for inexact matching problems. In addition, it needs a lot of tests for the reliable final result. In this research, we described features as calculating geometric properties of the pavement markings, suggested the solution for inextact matching problems, and performed tests to decide whether the result is acceptable or not, which use the property that road areas are flat. In order to evaluate the accuracy of matching, we made a visual evaluation and compared the result of this technique with those measured by analytical photogrammetry.

  • PDF

Mechanical and geometric features of endodontic instruments and its clinical effect (근관치료 기구의 기계 형태적 특성과 이에 따른 임상적 영향 고찰)

  • Kim, Hyeon-Cheol
    • Restorative Dentistry and Endodontics
    • /
    • v.36 no.1
    • /
    • pp.1-11
    • /
    • 2011
  • Introduction: The aim of this paper is to discuss the mechanical and geometric features of Nickel-titanium (NiTi) rotary files and its clinical effects. NiTi rotary files have been introduced to the markets with their own geometries and claims that they have better ability for the root canal shaping than their competitors. The contents of this paper include the (possible) interrelationship between the geometries of NiTi file (eg. tip, taper, helical angle, etc) and clinical performance of the files as follows; - Fracture modes of NiTi rotary files - Non-cutting guiding tip and glide path - Taper and clinical effects - Cross-sectional area and clinical effects - Heat treatments and surface characteristics - Screw-in effect and preservation of root dentin integrity - Designs for reducing screw-in effect Conclusions: Based on the reviewed contents, clinicians may have an advice to use various brands of NiTi rotary instruments regarding their advantages which would fit for clinical situation.

A Method for Extracting Mosaic Blocks Using Boundary Features (경계 특징을 이용한 모자이크 블록 추출 방법)

  • Jang, Seok-Woo;Park, Young-Jae;Huh, Moon-Haeng
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.19 no.12
    • /
    • pp.2949-2955
    • /
    • 2015
  • Recently, with the sharp increase of digital visual media such as photographs, animations, and digital videos, it has been necessary to generate mosaic blocks in a static or dynamic image intentionally or unintentionally. In this paper, we suggest a new method for detecting mosaic blocks contained in a color image using boundary features. The suggested method first extracts Canny edges in the image and finds candidate mosaic blocks with the boundary features of mosaic blocks. The method then determines real mosaic blocks after filtering out non-mosaic blocks using geometric features like size and elongatedness features. Experimental results show that the proposed method can detect mosaic blocks robustly rather than other methods in various types of input images.

Issey Miyake fashion's fold characteristics through fold architecture (Fold 건축 특성 분석에 따른 Issey Miyake 패션의 Fold 특성)

  • Seo, Meehee;Yoon, Jung-A;Lee, Younhee
    • The Research Journal of the Costume Culture
    • /
    • v.23 no.5
    • /
    • pp.861-875
    • /
    • 2015
  • This study examines the formative characteristics of Fold architecture and how its properties are shown in the fashion of the modern work of Issey Miyake through analysis. In this research, the Fold classification criteria for analysis features that appeared in Issey Miyake fashion features were established through research literature on Fold architecture and leading research. Empirical data collection was conducted for Issey Miyake's work and collection by collecting photo materials, and design concepts and the results are analyzed in terms of features. Study ranges of Issey Miyake's creative design development are Pleats Please, A-POC, 132.5 project, and collections from 2000 to 2014. The conclusion is as follows. First, design concepts presented in the Issey Miyake fashion features of Fold are Hybrid, topology, and uncertainty. Hybrid look for the meaning of fashion, which is the interaction between the wearer and garments. The concept of topology designs clothing, focusing on interrelationship of the body and clothing, and pays no attention to absolute size or the form of the clothing. The concept of uncertainty is an uncertain form that is infinitely expandable because all the elements have openness and uncertainty due to the determined incomplete state by the creator. Second, in the results presented in the Issey Miyake fashion features is the destruction of the boundary and diagram form. The destruction of the boundary is free from traditional clothing. The diagram form is a geometric form which does not create a Dart or Princess line.