• 제목/요약/키워드: geometric estimation

검색결과 353건 처리시간 0.024초

Estimation of Perceived Curve Radius Considering Visual Distortion at Curve Sections (곡선부 시각왜곡현상을 고려한 인지곡선반경 산정에 관한 연구)

  • Shin, Jae-Man;Park, Je-Jin;Son, Sang-Ho;Ha, Tae-Jun
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • 제30권4D호
    • /
    • pp.395-402
    • /
    • 2010
  • The seriousness of a traffic accident appears relatively higher on the curve sections compared with the straight sections due to a change in speed caused by a change in the driver's sight. In particular, the visual distortion phenomenon, one of the dangerous factors taking place on the curve sections, appears different according to the road's geometric design. Although it is a genuinely principal design factor which should be necessarily considered in designing a road, the previous researches on establishing the design standards for it have been insufficiently conducted. As a result, the establishment of the road design standards for the curve sections considering the sight distortion phenomenon is desperately required. This research examined the previous researches on the driver's behaviors, the driver's sight characteristics and the perceived curve radius on the curve sections, and developed the theoretical model of perceived curve radius to which a mathematical technique is applied in consideration of the visual distortion phenomenon on the two-lane curve sections in a local area. In addition, after the theoretical visual distortion was calculated on the basis of the theoretical model of perceived curve radius, the range of error on the theoretical recognition radius model formula was verified through comparing it with the previous researches' experiential visual distortion level and analyzing both of them. As a result, it was observed that as the curve radius practically increases in the theoretical recognition curve radius, the range of error tends to go down, which reflects well the characteristics of the curve sections on the road. Based on this research, it is expected that this research will be helpful to eliminate the safety defects when designing the curve sections and contribute to develop the road design standards considering human factors in the future.

Evaluation of Rotation Capacity of Steel Moment Connections ConsideringInelastic Local Buckling - Model Development (비탄성 국부좌굴을 고려한 철골 모멘트 접합부 회전능력 평가를 위한 모델 개발)

  • Lee, Kyung Koo
    • Journal of Korean Society of Steel Construction
    • /
    • 제20권5호
    • /
    • pp.617-624
    • /
    • 2008
  • Well-designed steel moment connections will undergo local buckling before they exhaust their available rotation capacity, and inelastic post-buckling deformation plays a major role in defining the connection rotation capacity. An approximate analytical method to model strength degradation and failure of beam plastic hinges due to local buckling and estimation of the seismic rotation capacity of fully restrained beam-column connections in special steel moment-resisting frames under both monotonic and cyclic loading conditions is proposed in this study. This method is based on the plastic mechanism and a yield line plastic hinge (YLPH) model whose geometry is determined using the shapes of the buckled plastic hinges observed in experiments. The proposed YLPH model was developed for the improved WUF-W and RBS connections and validated in comparison with experimental data. The effects of the beam section geometric parameters on the rotation capacity were discussed in the companion paper (parametric studies).

A Study on the Recognition of Curved Objects Using Range Data (3차원 화상을 이용한 곡면물체의 자동인식에 관한 연구)

  • 양우석;장종환
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • 제19권10호
    • /
    • pp.1910-1924
    • /
    • 1994
  • Curved 3D objects represented by range data contain large amounts of information compared with planar objects, but do not have distinct features for matching to those of object models. This makes it difficult to represent and identify a general 3D curved object. This paper introduces a new view-point independent approach to recognizing general 3D curved objects using range data. Our approach makes use of the relative geometric differences between particular points on the object surface and some model points. The model points are prespecified arbitrarily and keeping the task in mind so that the following task can be easily described using the model points. Our approach has several advantages. Since model points are specified arbitrarily and task dependently, further processing can be reduced in application by locating the model points at places which are useful for further operations in the task. The knowledge base is simple with less storage requirement. And, it is easy to compensate the uncertainties of positions estimation caused by noise and quantization error.

  • PDF

Performance Improvement of Fractal Dimension Estimator Based on a New Sampling Method (새로운 샘플링법에 기초한 프랙탈 차원 추정자의 정도 개선)

  • Jin, Gang-Gyoo;Choi, Dong-Sik
    • Journal of Navigation and Port Research
    • /
    • 제38권1호
    • /
    • pp.45-52
    • /
    • 2014
  • Fractal theory has been widely used to quantify the complexity of remotely sensed digital elevation models and images. Despite successful applications of fractals to a variety of fields including computer graphics, engineering and geosciences, the performance of fractal estimators depends highly on data sampling. In this paper, we propose an algorithm for computing the fractal dimension based on the triangular prism method and a new sampling method. The proposed sampling method combines existing two methods, that is, the geometric step method and the divisor step method to increase pixel utilization. In addition, while the existing estimation methods are based on $N{\times}M$ window, the proposed method expands to $N{\times}M$ window. The proposed method is applied to generated fractal DEM, Brodatz's image DB and real images taken in the campus to demonstrate its feasibility.

Buckling Analysis of Circular Cylinders with Initial Imperfection Subjected to Hydrostatic Pressure (수압을 받는 원통형 실린더의 초기부정을 고려한 좌굴해석)

  • Nho, In Sik;Ryu, Jae Won;Lim, Seung Jae;Cho, Sang Rai;Cho, Yun Sik
    • Journal of the Society of Naval Architects of Korea
    • /
    • 제54권3호
    • /
    • pp.267-273
    • /
    • 2017
  • Pressure hulls of submerged structures are generally designed as circular cylinders, spheres or cones with form of axisymmetric shell of revolution to withstand the high external pressure of deep ocean. The compressive buckling (implosion) due to hydrostatic pressure is the main concern of structural design of pressure hull and many design codes are provided for it. It is well-known that the buckling behavior of thin shell of revolution is very sensitive to the initial geometric imperfections introduced during the construction process of cutting and welding. Hence, the theoretical solutions for thin shells with perfect geometry often provide much higher buckling pressures than the measured data in tests or real structures and more precise structural analysis techniques are prerequisite for the safe design of pressure hulls. So this paper dealt with various buckling pressure estimation techniques for unstiffened circular cylinder under hydrostatic pressure conditions. The empirical design equations, eigenvalue analysis technique for critical pressure and collapse behaviors of thin cylindrical shells by the incremental nonlinear FE analysis were applied. Finally all the obtained results were compared with those of the pressure chamber test for the aluminium models. The pros and cons of each techniques were discussed and the most rational approach for the implosion of circular cylinder was recommended.

Axial Turbine Aerodynamic Design of Small Heavy-Duty Gas Turbines (발전용 소형가스터빈의 축류터빈 공력설계)

  • Kim, Joung Seok;Lee, Wu Sang;Ryu, Je Wook
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • 제37권4호
    • /
    • pp.415-421
    • /
    • 2013
  • This study describes the aerodynamic design procedure for the axial turbines of a small heavy-duty gas turbine engine being developed by Doosan Heavy Industries. The design procedure mainly consists of three parts: namely, flowpath design, airfoil design, and 3D performance calculation. To design the optimized flowpath, through-flow calculations as well as the loss estimation are widely used to evaluate the effect of geometric variables, for example, shape of meridional plane, mean radius, blades axial gap, and hade angle. During the airfoil design procedure, the optimum number of blades is calculated by empirical correlations based on the in/outlet flow angles, and then 2D airfoil planar sections are designed carefully, followed by 2D B2B NS calculations. The designed planar sections are stacked along the spanwise direction, leading to a 3D surfaced airfoil shape. To consider the 3D effect on turbine performance, 3D multistage Euler calculation, single row, and multistage NS calculations are performed.

Precise Positioning of Farm Vehicle Using Plural GPS Receivers - Error Estimation Simulation and Positioning Fixed Point - (다중 GPS 수신기에 의한 농업용 차량의 정밀 위치 계측(I) - 오차추정 시뮬레이션 및 고정위치계측 -)

  • Kim, Sang-Cheol;Cho, Sung-In;Lee, Seung-Gi;Lee, W.Y.;Hong, Young-Gi;Kim, Gook-Hwan;Cho, Hee-Je;Gang, Ghi-Won
    • Journal of Biosystems Engineering
    • /
    • 제36권2호
    • /
    • pp.116-121
    • /
    • 2011
  • This study was conducted to develop a robust navigator which could be in positioning for precision farming through developing a plural GPS receiver with 4 sets of GPS antenna. In order to improve positioning accuracy by integrating GPS signals received simultaneously, the algorithm for processing plural GPS signal effectively was designed. Performance of the algorithm was tested using a simulation program and a fixed point on WGS 84 coordinates. Results of this study are aummarized as followings. 1. 4 sets of lower grade GPS receiver and signals were integrated by kalman filter algorithm and geometric algorithm to increase positioning accuracy of the data. 2. Prototype was composed of 4 sets of GPS receiver and INS components. All Star which manufactured by CMC, gyro compass made by KVH, ground speed sensor and integration S/W based on RTOS(Real Time Operating System)were used. 3. Integration algorithm was simulated by developed program which could generate random position error less then 10 m and tested with the prototype at a fixed position. 4. When navigation data was integrated by geometrical correction and kalman filter algorithm, estimated positioning erros were less then 0.6 m and 1.0 m respectively in simulation and fixed position tests.

Estimation of Mean Air Exchange Rate and Generation Rate of Nitrogen Dioxide Using Box Model in Residence (주택에서 Box Model을 이용한 평균 환기율 및 이산화질소 발생량 추정)

  • Bae, Hyeon Ju;Yang, Won Ho;Son, Bu Sun;Kim, Dae Won
    • Journal of Environmental Science International
    • /
    • 제13권7호
    • /
    • pp.645-653
    • /
    • 2004
  • Indoor air quality is affected by source strength of pollutants, ventilation rate, decay rate, outdoor level, and so on. Although technologies measuring these factors exist directly, direct measurements of all factors are not always practical in most field studies. The purpose of this study was to develop an alternative method to estimate these factors by application of multiple measurements. For the total duration of 30 days, daily indoor and outdoor $NO_2$ concentrations were measured in 30 houses in Brisbane, Australia, and for 21 days in 40 houses in Seoul, Korea, respectively. Using a box model by mass balance and linear regression analysis, penetration factor (ventilation divided by sum of air exchange rate and deposition constant) and source strength factor (emission rate divided by sum of air exchange rate and deposition constant) were calculated, Sub-sequently, the ventilation and source strength were estimated. In Brisbane, the penetration factors were $0.59\pm0.14$ and they were unaffected by the presence of a gas range. During sampling period, geometric mean of natural ventilation was estimated to be $l.l0\pm1.5l$ ACH, assuming a residential $NO_2$ decay rate of 0.8 hr^{-1}$ in Brisbane. In Seoul, natural ventilation was $1.15\pm1.73$ ACH with residential $NO_2$ decay rate of 0.94 hr^{-1}$ Source strength of $NO_2$ in the houses with gas range $(12.7\pm9.8$ ppb/hr) were significantly higher than those in houses with an electric range $(2.8\pm2,6$ ppb/hr) in Brisbane. In Seoul, source strength in the houses with gas range were $l6.8\pm8.2$ ppb/hr. Conclusively, indoor air quality using box model by mass balance was effectively characterized.

Near Real Time Flood Area Analysis Based on SAR Image and GIS (GIS와 SAR 영상을 연계한 근 실시간 홍수지역 분석)

  • Sohn, Hong-Gyoo;Song, Yeong-Sun;Kim, Gi-Hong;Yun, Kong-Hyun
    • Journal of the Korean Society of Hazard Mitigation
    • /
    • 제4권4호
    • /
    • pp.35-42
    • /
    • 2004
  • Accurate classification of water area is a preliminary step to analyze the flooded area and damages caused by flood. This is essential process for monitoring the region where annually repeating flood is a problem. The accurate estimation of flooded area can ultimately be utilized as a primary source of information for the policy decision. In this paper, flooded areas was classified using 1:25,000 land use map and a RADARSAT image of Ok-Chun and Bo-Eun located in Chung-Book province taken in 12th of August, 1998. Then we analyzed the flood area based on GIS. A RADARSAT image was used to classify the flooded areas with slope theme generated from digital elevation model. In processing on a RADARSAT image, the geometric correction was performed by a backwardgeocoding method based on ephemeris data and one control point for near real time flood area analysis.

ESTIMATION OF FATIGUE LIFE BY LETHARGY COEFFICIENT USING MOLECULAR DYNAMIC SIMULATION

  • Song, J.H.;Noh, H.G.;Yu, H.S.;Kang, H.Y.;Yang, S.M.
    • International Journal of Automotive Technology
    • /
    • 제5권3호
    • /
    • pp.215-219
    • /
    • 2004
  • A vehicle structure needs to be more precisely analyzed because of complexities and varieties. Structural fatigue which is generated by fluctuations of stresses during the service life of a mechanical system is the primary concern in the structural design for safety. A fatigue life is difficult to obtain in structural components during the service life of mechanical systems since the fluctuating stress contributes to fatigue. This study introduces new procedures to measure the lethargy coefficient and to predict the fatigue life of a mechanical structure by using molecular dynamic simulation. A lethargy coefficient is the total defect-estimating coefficient, which was obtained by using the results of a simple tensile test in this study. With this lethargy coefficient, fatigue life was estimated. The proposed method will be useful in predicting the fatigue life of a structurally-modified vehicle design. The effectiveness of the proposed method using lethargy coefficient measurement to predict the fatigue life of a structure was examined by applying this method to predict the fatigue life of SS41 steel, used extensively as material of vehicle structures. Two types of specimen such as pre-cracked plate and simple plate is discussed. equation of fatigue life using the lethargy coefficient and failure time, both obtained from a simple tensile test, will be useful in engineering. This measurement and prediction technology will be extended for use in analysis of any geometric shapes of modified automotive structures.