• 제목/요약/키워드: geomechanics parameters

검색결과 398건 처리시간 0.028초

Water-induced changes in mechanical parameters of soil-rock mixture and their effect on talus slope stability

  • Xing, Haofeng;Liu, Liangliang;Luo, Yong
    • Geomechanics and Engineering
    • /
    • 제18권4호
    • /
    • pp.353-362
    • /
    • 2019
  • Soil-rock mixture (S-RM) is an inhomogeneous geomaterial that is widely encountered in nature. The mechanical and physical properties of S-RM are important factors contributing towards different deformation characteristics and unstable modes of the talus slope. In this paper, the equivalent substitution method was employed for the preparation of S-RM test samples, and large-scale triaxial laboratory tests were conducted to investigate their mechanical parameters by varying the water content and confining pressure. Additionally, a simplified geological model based on the finite element method was established to compare the stability of talus slopes with different strength parameters and in different excavation and support processes. The results showed that the S-RM samples exhibit slight strain softening and strain hardening under low and high water content, respectively. The water content of S-RM also had an effect on decreasing strength parameters, with the decrease in magnitude of the cohesive force and internal friction angle being mainly influenced by the low and high water content, respectively. The stability of talus slope decreased with a decrease in the cohesion force and internal friction angle, thereby creating a new shallow slip surface. Since the excavation of toe of the slope for road construction can easily cause a landslide, anti-slide piles can be used to effectively improve the slope stability, especially for shallow excavations. But the efficacy of anti-slide piles gradually decreases with increasing water content. This paper can act as a reference for the selection of strength parameters of S-RM and provide an analysis of the instability of the talus slope.

Field test and numerical study of the effect of shield tail-grouting parameters on surface settlement

  • Shao, Xiaokang;Yang, Zhiyong;Jiang, Yusheng;Yang, Xing;Qi, Weiqiang
    • Geomechanics and Engineering
    • /
    • 제29권5호
    • /
    • pp.509-522
    • /
    • 2022
  • Tail-grouting is an effective measure in shield engineering for filling the gap at the shield tail to reduce ground deformation. However, the gap-filling ratio affects the value of the gap parameters, leading to different surface settlements. It is impossible to adjust the fill ratio indiscriminately to study its effect, because the allowable adjustment range of the grouting quantity is limited to ensure construction site safety. In this study, taking the shield tunnel section between Chaoyanggang Station and Shilihe Station of Beijing Metro Line 17 as an example, the correlation between the tail-grouting parameter and the surface settlement is investigated and the optimal grouting quantity is evaluated. This site is suitable for conducting field tests to reduce the tail-grouting quantity of shield tunneling over a large range. In addition, the shield tunneling under different grouting parameters was simulated. Furthermore, we analyzed the evolution law of the surface settlement under different grouting parameters and obtained the difference in the settlement parameters for each construction stage. The results obtained indicate that the characteristics of the grout affect the development of the surface settlement. Therefore, reducing the setting time or increasing the initial strength of the grout could effectively suppress the development of surface subsidence. As the fill ratio decreases, the loose zone of the soil above the tunnel expands, and the soil deformation is easily transmitted to the surface. Meanwhile, owing to insufficient grout support, the lateral pressure on the tunnel segments is significantly reduced, and the segment moves considerably after being removed from the shield tail.

Prediction of TBM disc cutter wear based on field parameters regression analysis

  • Lei She;Yan-long Li;Chao Wang;She-rong Zhang;Sun-wen He;Wen-jie Liu;Min Du;Shi-min Li
    • Geomechanics and Engineering
    • /
    • 제35권6호
    • /
    • pp.647-663
    • /
    • 2023
  • The investigation of the disc cutter wear prediction has an important guiding role in TBM equipment selection, project planning, and cost forecasting, especially when tunneling in a long-distance rock formations with high strength and high abrasivity. In this study, a comprehensive database of disc cutter wear data, geological properties, and tunneling parameters is obtained from a 1326 m excavated metro tunnel project in leptynite in Shenzhen, China. The failure forms and wear consumption of disc cutters on site are analyzed with emphasis. The results showed that 81% of disc cutters fail due to uniform wear, and other cutters are replaced owing to abnormal wear, especially flat wear of the cutter rings. In addition, it is found that there is a reasonable direct proportional relationship between the uniform wear rate (WR) and the installation radius (R), and the coefficient depends on geological characteristics and tunneling parameters. Thus, a preliminary prediction formula of the uniform wear rate, based on the installation radius of the cutterhead, was established. The correlation between some important geological properties (KV and UCS) along with some tunneling parameters (Fn and p) and wear rate was discussed using regression analysis methods, and several prediction models for uniform wear rate were developed. Compared with a single variable, the multivariable model shows better prediction ability, and 89% of WR can be accurately estimated. The prediction model has reliability and provides a practical tool for wear prediction of disc cutter under similar hard rock projects with similar geological conditions.

Prediction of concrete strength from rock properties at the preliminary design stage

  • Karaman, Kadir;Bakhytzhan, Aknur
    • Geomechanics and Engineering
    • /
    • 제23권2호
    • /
    • pp.115-125
    • /
    • 2020
  • This study aims to explore practical and useful equations for rapid evaluation of uniaxial compressive strength of concrete (UCS-C) during the preliminary design stage of aggregate selection. For this purpose, aggregates which were produced from eight different intact rocks were used in the production of concretes. Laboratory experiments involved the tests for uniaxial compressive strength (UCS-R), point load index (PLI-R), P wave velocity (UPV-R), apparent porosity (n-R), unit weight (UW-R) and aggregate impact value (AIV-R) of the rock samples. UCS-C, point load index (PLI-C) and P wave velocity (UPV-C) of concrete samples were also determined. Relationships between UCS-R-rock parameters and UCS-C-concrete parameters were developed by regression analyses. In the simple regression analyses, PLI-C, UPV-C, UCS-R, PLI-R, and UPV-R were found to be statistically significant independent variables to estimate the UCS-C. However, higher coefficients of determination (R2=0.97-1.0) were obtained by multiple regression analyses. The results of simple regression analysis were also compared to the limited number of previous studies. The strength conversion factor (k) values were found to be 14.3 and 14.7 for concrete and rock samples, respectively. It is concluded that the UCS-C can roughly be estimated from derived equations only for the specified rock types.

Strain-based stability analysis of locally loaded slopes under variable conditions

  • Wang, Jia-Chen;Zhu, Hong-Hu;Shi, Bin;Garg, Ankit
    • Geomechanics and Engineering
    • /
    • 제23권3호
    • /
    • pp.289-300
    • /
    • 2020
  • With the rapid development of the distributed strain sensing (DSS) technology, the strain becomes an alternative monitoring parameter to analyze slope stability conditions. Previous studies reveal that the horizontal strain measurements can be used to evaluate the deformation pattern and failure mechanism of soil slopes, but they fail to consider various influential factors. Regarding the horizontal strain as a key parameter, this study aims to investigate the stability condition of a locally loaded slope by adopting the variable-controlling method and conducting a strength reduction finite element analysis. The strain distributions and factors of safety in different conditions, such as slope ratio, soil strength parameters and loading locations, are investigated. The results demonstrate that the soil strain distribution is closely related to the slope stability condition. As the slope ratio increases, more tensile strains accumulate in the slope mass under surcharge loading. The cohesion and the friction angle of soil have exponential relationships with the strain parameters. They also display close relationships with the factors of safety. With an increasing distance from the slope edge to the loading position, the transition from slope instability to ultimate bearing capacity failure can be illustrated from the strain perspective.

Stochastic cost optimization of ground improvement with prefabricated vertical drains and surcharge preloading

  • Kim, Hyeong-Joo;Lee, Kwang-Hyung;Jamin, Jay C.;Mission, Jose Leo C.
    • Geomechanics and Engineering
    • /
    • 제7권5호
    • /
    • pp.525-537
    • /
    • 2014
  • The typical design of ground improvement with prefabricated vertical drains (PVD) and surcharge preloading involves a series of deterministic analyses using averaged or mean soil properties for the various combination of the PVD spacing and surcharge preloading height that would meet the criteria for minimum consolidation time and required degree of consolidation. The optimum design combination is then selected in which the total cost of ground improvement is a minimum. Considering the variability and uncertainties of the soil consolidation parameters, as well as considering the effects of soil disturbance (smear zone) and drain resistance in the analysis, this study presents a stochastic cost optimization of ground improvement with PVD and surcharge preloading. Direct Monte Carlo (MC) simulation and importance sampling (IS) technique is used in the stochastic analysis by limiting the sampled random soil parameters within the range from a minimum to maximum value while considering their statistical distribution. The method has been verified in a case study of PVD improved ground with preloading, in which average results of the stochastic analysis showed a good agreement with field monitoring data.

An elastoplastic bounding surface model for the cyclic undrained behaviour of saturated soft clays

  • Cheng, Xinglei;Wang, Jianhua
    • Geomechanics and Engineering
    • /
    • 제11권3호
    • /
    • pp.325-343
    • /
    • 2016
  • A total stress-based bounding surface model is developed to predict the undrained behaviour of saturated soft clays under cyclic loads based on the anisotropic hardening modulus field and bounding-surface theories. A new hardening rule is developed based on a new interpolation function of the hardening modulus that has simple mathematic expression and fewer model parameters. The evolution of hardening modulus field is described in the deviatoric stress space. It is assumed that the stress reverse points are the mapping centre points and the mapping centre moves with the variation of loading and unloading paths to describe the cyclic stress-strain hysteresis curve. In addition, by introducing a model parameter that reflects the accumulation rate and level of shear strain to the interpolation function, the cyclic shakedown and failure behaviour of soil elements with different combinations of initial and cyclic stresses can be captured. The methods to determine the model parameters using cyclic triaxial compression tests are also studied. Finally, the cyclic triaxial extension and torsional shear tests are performed. By comparing the predictions with the test results, the model can be used to describe undrained cyclic stress-strain responses of elements with different stress states for the tested clays.

Effect of hydraulic distribution on the stability of a plane slide rock slope under the nonlinear Barton-Bandis failure criterion

  • Zhao, Lian-Heng;Cao, Jingyuan;Zhang, Yingbin;Luo, Qiang
    • Geomechanics and Engineering
    • /
    • 제8권3호
    • /
    • pp.391-414
    • /
    • 2015
  • In this paper, stabilities of a plane slide rock slope under different hydraulic distributions were studied based on the nonlinear Barton-Bandis (B-B) failure criterion. The influence of various parameters on the stability of rock slopes was analyzed. Parametric analysis indicated that studying the factor of safety (FS) of planar slide rock slopes using the B-B failure criterion is both simple and effective and that the effects of the basic friction angle of the joint (${\varphi}_b$), the joint roughness coefficient (JRC), and the joint compressive strength (JCS) on the FS of a planar slide rock slope are significant. Qualitatively, the influence of the JCS on the FS of a slope is small, whereas the influences of the ${\varphi}_b$ and the JRC are significant. The FS of the rock slope decreases as the water in a tension crack becomes deeper. This trend is more significant when the flow outlet is blocked, a situation that is particularly prevalent in regions with permafrost or seasonal frozen soil. Finally, the work is extended to study the reliability of the slope against plane failure according to the uncertainty from physical and mechanics parameters.

Effect of clay mineral types on the strength and microstructure properties of soft clay soils stabilized by epoxy resin

  • Hamidi, Salaheddin;Marandi, Seyed Morteza
    • Geomechanics and Engineering
    • /
    • 제15권2호
    • /
    • pp.729-738
    • /
    • 2018
  • Soft clay soils due to their various geotechnical problems, stabilized with different additives. Traditional additives such as cement and lime will not able to increase the soil strength properties significantly. So, it seems necessary to use new additives for increasing strength parameters of soft clay soils significantly. Among the new additives, epoxy resins have excellent physical and mechanical properties, low shrinkage, excellent resistance to chemicals and corrosive materials, etc. So, in this research, epoxy resin used for stabilization of soft clay soils. For comprehensive study, three clay soil samples with different PI and various clay mineral types were studied. A series of uniaxial tests, SEM and XRD analysis conducted on the samples. The results show that using epoxy resin increases the strength parameters such as UCS, elastic modulus and material toughness about 100 to 500 times which the increase was dependent on the type of clay minerals type in the soil. Also, In addition to water conservation, the best efficiency in the weakest and most sensitive soils is the prominent results of stabilization by epoxy resin which can be used in different climatic zones, especially in hot and dry and equatorial climate which will be faced with water scarcity.

Prediction of unconfined compressive strength ahead of tunnel face using measurement-while-drilling data based on hybrid genetic algorithm

  • Liu, Jiankang;Luan, Hengjie;Zhang, Yuanchao;Sakaguchi, Osamu;Jiang, Yujing
    • Geomechanics and Engineering
    • /
    • 제22권1호
    • /
    • pp.81-95
    • /
    • 2020
  • Measurement of the unconfined compressive strength (UCS) of the rock is critical to assess the quality of the rock mass ahead of a tunnel face. In this study, extensive field studies have been conducted along 3,885 m of the new Nagasaki tunnel in Japan. To predict UCS, a hybrid model of artificial neural network (ANN) based on genetic algorithm (GA) optimization was developed. A total of 1350 datasets, including six parameters of the Measurement-While- Drilling data and the UCS were considered as input and output parameters respectively. The multiple linear regression (MLR) and the ANN were employed to develop contrast models. The results reveal that the developed GA-ANN hybrid model can predict UCS with higher performance than the ANN and MLR models. This study is of great significance for accurately and effectively evaluating the quality of rock masses in tunnel engineering.